Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
f7b53f07
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
大约 1 年 前同步成功
通知
97
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f7b53f07
编写于
12月 17, 2020
作者:
L
LielinJiang
提交者:
GitHub
12月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adapt wgan (#128)
上级
7bba9f8d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
114 addition
and
73 deletion
+114
-73
configs/wgan_mnist.yaml
configs/wgan_mnist.yaml
+25
-15
ppgan/datasets/common_vision_dataset.py
ppgan/datasets/common_vision_dataset.py
+21
-12
ppgan/engine/trainer.py
ppgan/engine/trainer.py
+16
-4
ppgan/models/base_model.py
ppgan/models/base_model.py
+10
-2
ppgan/models/gan_model.py
ppgan/models/gan_model.py
+42
-40
未找到文件。
configs/wgan_mnist.yaml
浏览文件 @
f7b53f07
...
@@ -15,18 +15,20 @@ model:
...
@@ -15,18 +15,20 @@ model:
n_layers
:
3
n_layers
:
3
input_nc
:
1
input_nc
:
1
norm_type
:
instance
norm_type
:
instance
gan_mode
:
wgan
gan_criterion
:
n_critic
:
5
name
:
GANLoss
gan_mode
:
wgan
params
:
disc_iters
:
5
visual_interval
:
500
dataset
:
dataset
:
train
:
train
:
name
:
CommonVisionDataset
name
:
CommonVisionDataset
class_name
:
MNIST
dataset_name
:
MNIST
dataroot
:
None
num_workers
:
4
num_workers
:
4
batch_size
:
64
batch_size
:
64
mode
:
train
return_label
:
False
return_cls
:
False
transforms
:
transforms
:
-
name
:
Normalize
-
name
:
Normalize
mean
:
[
127.5
]
mean
:
[
127.5
]
...
@@ -34,28 +36,36 @@ dataset:
...
@@ -34,28 +36,36 @@ dataset:
keys
:
[
image
]
keys
:
[
image
]
test
:
test
:
name
:
CommonVisionDataset
name
:
CommonVisionDataset
class_name
:
MNIST
dataset_name
:
MNIST
dataroot
:
None
num_workers
:
0
num_workers
:
0
batch_size
:
64
batch_size
:
64
mode
:
test
return_label
:
False
transforms
:
transforms
:
-
name
:
Normalize
-
name
:
Normalize
mean
:
[
127.5
]
mean
:
[
127.5
]
std
:
[
127.5
]
std
:
[
127.5
]
keys
:
[
image
]
keys
:
[
image
]
return_cls
:
False
optimizer
:
name
:
Adam
beta1
:
0.5
lr_scheduler
:
lr_scheduler
:
name
:
linear
name
:
LinearDecay
learning_rate
:
0.0002
learning_rate
:
0.0002
start_epoch
:
100
start_epoch
:
100
decay_epochs
:
100
decay_epochs
:
100
# will get from real dataset
iters_per_epoch
:
1
optimizer
:
optimizer_G
:
name
:
Adam
net_names
:
-
netG
beta1
:
0.5
optimizer_D
:
name
:
Adam
net_names
:
-
netD
beta1
:
0.5
log_config
:
log_config
:
interval
:
100
interval
:
100
...
...
ppgan/datasets/common_vision_dataset.py
浏览文件 @
f7b53f07
...
@@ -21,29 +21,38 @@ from .transforms.builder import build_transforms
...
@@ -21,29 +21,38 @@ from .transforms.builder import build_transforms
@
DATASETS
.
register
()
@
DATASETS
.
register
()
class
CommonVisionDataset
(
Base
Dataset
):
class
CommonVisionDataset
(
paddle
.
io
.
Dataset
):
"""
"""
Dataset for using paddle vision default datasets
Dataset for using paddle vision default datasets
, such as mnist, flowers.
"""
"""
def
__init__
(
self
,
cfg
):
def
__init__
(
self
,
dataset_name
,
transforms
=
None
,
return_label
=
True
,
params
=
None
):
"""Initialize this dataset class.
"""Initialize this dataset class.
Args:
Args:
cfg (dict) -- stores all the experiment flags
dataset_name (str): return a dataset from paddle.vision.datasets by this option.
transforms (list[dict]): A sequence of data transforms config.
return_label (bool): whether to retuan a label of a sample.
params (dict): paramters of paddle.vision.datasets.
"""
"""
super
(
CommonVisionDataset
,
self
).
__init__
(
cfg
)
super
(
CommonVisionDataset
,
self
).
__init__
()
dataset_cls
=
getattr
(
paddle
.
vision
.
datasets
,
cfg
.
pop
(
'class_name'
)
)
dataset_cls
=
getattr
(
paddle
.
vision
.
datasets
,
dataset_name
)
transform
=
build_transforms
(
cfg
.
pop
(
'transforms'
,
None
)
)
transform
=
build_transforms
(
transforms
)
self
.
return_
cls
=
cfg
.
pop
(
'return_cls'
,
True
)
self
.
return_
label
=
return_label
param_dict
=
{}
param_dict
=
{}
param_names
=
list
(
dataset_cls
.
__init__
.
__code__
.
co_varnames
)
param_names
=
list
(
dataset_cls
.
__init__
.
__code__
.
co_varnames
)
if
'transform'
in
param_names
:
if
'transform'
in
param_names
:
param_dict
[
'transform'
]
=
transform
param_dict
[
'transform'
]
=
transform
for
name
in
param_names
:
if
name
in
cfg
:
if
params
is
not
None
:
param_dict
[
name
]
=
cfg
.
get
(
name
)
for
name
in
param_names
:
if
name
in
params
:
param_dict
[
name
]
=
params
[
name
]
self
.
dataset
=
dataset_cls
(
**
param_dict
)
self
.
dataset
=
dataset_cls
(
**
param_dict
)
...
@@ -53,7 +62,7 @@ class CommonVisionDataset(BaseDataset):
...
@@ -53,7 +62,7 @@ class CommonVisionDataset(BaseDataset):
if
isinstance
(
return_list
,
(
tuple
,
list
)):
if
isinstance
(
return_list
,
(
tuple
,
list
)):
if
len
(
return_list
)
==
2
:
if
len
(
return_list
)
==
2
:
return_dict
[
'img'
]
=
return_list
[
0
]
return_dict
[
'img'
]
=
return_list
[
0
]
if
self
.
return_
cls
:
if
self
.
return_
label
:
return_dict
[
'class_id'
]
=
np
.
asarray
(
return_list
[
1
])
return_dict
[
'class_id'
]
=
np
.
asarray
(
return_list
[
1
])
else
:
else
:
return_dict
[
'img'
]
=
return_list
[
0
]
return_dict
[
'img'
]
=
return_list
[
0
]
...
...
ppgan/engine/trainer.py
浏览文件 @
f7b53f07
...
@@ -211,12 +211,24 @@ class Trainer:
...
@@ -211,12 +211,24 @@ class Trainer:
current_paths
=
self
.
model
.
get_image_paths
()
current_paths
=
self
.
model
.
get_image_paths
()
current_visuals
=
self
.
model
.
get_current_visuals
()
current_visuals
=
self
.
model
.
get_current_visuals
()
for
j
in
range
(
len
(
current_paths
)):
if
len
(
current_visuals
)
>
0
and
list
(
short_path
=
os
.
path
.
basename
(
current_paths
[
j
])
current_visuals
.
values
())[
0
].
shape
==
4
:
basename
=
os
.
path
.
splitext
(
short_path
)[
0
]
num_samples
=
list
(
current_visuals
.
values
())[
0
].
shape
[
0
]
else
:
num_samples
=
1
for
j
in
range
(
num_samples
):
if
j
<
len
(
current_paths
):
short_path
=
os
.
path
.
basename
(
current_paths
[
j
])
basename
=
os
.
path
.
splitext
(
short_path
)[
0
]
else
:
basename
=
'{:04d}_{:04d}'
.
format
(
i
,
j
)
for
k
,
img_tensor
in
current_visuals
.
items
():
for
k
,
img_tensor
in
current_visuals
.
items
():
name
=
'%s_%s'
%
(
basename
,
k
)
name
=
'%s_%s'
%
(
basename
,
k
)
visual_results
.
update
({
name
:
img_tensor
[
j
]})
if
len
(
img_tensor
.
shape
)
==
4
:
visual_results
.
update
({
name
:
img_tensor
[
j
]})
else
:
visual_results
.
update
({
name
:
img_tensor
})
self
.
visual
(
'visual_test'
,
self
.
visual
(
'visual_test'
,
visual_results
=
visual_results
,
visual_results
=
visual_results
,
...
...
ppgan/models/base_model.py
浏览文件 @
f7b53f07
...
@@ -50,7 +50,7 @@ class BaseModel(ABC):
...
@@ -50,7 +50,7 @@ class BaseModel(ABC):
# save checkpoint (model.nets) \/
# save checkpoint (model.nets) \/
"""
"""
def
__init__
(
self
):
def
__init__
(
self
,
params
=
None
):
"""Initialize the BaseModel class.
"""Initialize the BaseModel class.
When creating your custom class, you need to implement your own initialization.
When creating your custom class, you need to implement your own initialization.
...
@@ -62,7 +62,13 @@ class BaseModel(ABC):
...
@@ -62,7 +62,13 @@ class BaseModel(ABC):
-- self.optimizers (dict): define and initialize optimizers. You can define one optimizer for each network.
-- self.optimizers (dict): define and initialize optimizers. You can define one optimizer for each network.
If two networks are updated at the same time, you can use itertools.chain to group them.
If two networks are updated at the same time, you can use itertools.chain to group them.
See cycle_gan_model.py for an example.
See cycle_gan_model.py for an example.
Args:
params (dict): Hyper params for train or test. Default: None.
"""
"""
self
.
params
=
params
self
.
is_train
=
True
if
self
.
params
is
None
else
self
.
params
.
get
(
'is_train'
,
True
)
self
.
nets
=
OrderedDict
()
self
.
nets
=
OrderedDict
()
self
.
optimizers
=
OrderedDict
()
self
.
optimizers
=
OrderedDict
()
...
@@ -149,7 +155,9 @@ class BaseModel(ABC):
...
@@ -149,7 +155,9 @@ class BaseModel(ABC):
def
get_image_paths
(
self
):
def
get_image_paths
(
self
):
""" Return image paths that are used to load current data"""
""" Return image paths that are used to load current data"""
return
self
.
image_paths
if
hasattr
(
self
,
'image_paths'
):
return
self
.
image_paths
return
[]
def
get_current_visuals
(
self
):
def
get_current_visuals
(
self
):
"""Return visualization images."""
"""Return visualization images."""
...
...
ppgan/models/gan_model.py
浏览文件 @
f7b53f07
...
@@ -19,7 +19,7 @@ from .base_model import BaseModel
...
@@ -19,7 +19,7 @@ from .base_model import BaseModel
from
.builder
import
MODELS
from
.builder
import
MODELS
from
.generators.builder
import
build_generator
from
.generators.builder
import
build_generator
from
.discriminators.builder
import
build_discriminator
from
.discriminators.builder
import
build_discriminator
from
.criterions.
gan_loss
import
GANLoss
from
.criterions.
builder
import
build_criterion
from
..solver
import
build_optimizer
from
..solver
import
build_optimizer
from
..modules.init
import
init_weights
from
..modules.init
import
init_weights
...
@@ -32,44 +32,46 @@ class GANModel(BaseModel):
...
@@ -32,44 +32,46 @@ class GANModel(BaseModel):
vanilla GAN paper: https://arxiv.org/abs/1406.2661
vanilla GAN paper: https://arxiv.org/abs/1406.2661
"""
"""
def
__init__
(
self
,
cfg
):
def
__init__
(
self
,
generator
,
discriminator
=
None
,
gan_criterion
=
None
,
params
=
None
):
"""Initialize the GAN Model class.
"""Initialize the GAN Model class.
Parameters:
Args:
cfg (config dict)-- stores all the experiment flags; needs to be a subclass of Dict
generator (dict): config of generator.
discriminator (dict): config of discriminator.
gan_criterion (dict): config of gan criterion.
params (dict): hyper params for train or test. Default: None.
"""
"""
super
(
GANModel
,
self
).
__init__
(
cfg
)
super
(
GANModel
,
self
).
__init__
(
params
)
self
.
step
=
0
self
.
iter
=
0
self
.
n_critic
=
cfg
.
model
.
get
(
'n_critic'
,
1
)
self
.
visual_interval
=
cfg
.
log_config
.
visiual_interval
self
.
disc_iters
=
1
if
self
.
params
is
None
else
self
.
params
.
get
(
self
.
samples_every_row
=
cfg
.
model
.
get
(
'samples_every_row'
,
8
)
'disc_iters'
,
1
)
self
.
disc_start_iters
=
(
0
if
self
.
params
is
None
else
self
.
params
.
get
(
# define networks (both generator and discriminator)
'disc_start_iters'
,
0
))
self
.
nets
[
'netG'
]
=
build_generator
(
cfg
.
model
.
generator
)
self
.
samples_every_row
=
(
8
if
self
.
params
is
None
else
self
.
params
.
get
(
'samples_every_row'
,
8
))
self
.
visual_interval
=
(
500
if
self
.
params
is
None
else
self
.
params
.
get
(
'visual_interval'
,
500
))
# define generator
self
.
nets
[
'netG'
]
=
build_generator
(
generator
)
init_weights
(
self
.
nets
[
'netG'
])
init_weights
(
self
.
nets
[
'netG'
])
# define a discriminator
# define a discriminator
if
self
.
is_train
:
if
self
.
is_train
:
self
.
nets
[
'netD'
]
=
build_discriminator
(
cfg
.
model
.
discriminator
)
if
discriminator
is
not
None
:
init_weights
(
self
.
nets
[
'netD'
])
self
.
nets
[
'netD'
]
=
build_discriminator
(
discriminator
)
init_weights
(
self
.
nets
[
'netD'
])
if
self
.
is_train
:
self
.
losses
=
{}
# define loss functions
# define loss functions
self
.
criterionGAN
=
GANLoss
(
cfg
.
model
.
gan_mode
)
if
gan_criterion
:
self
.
criterionGAN
=
build_criterion
(
gan_criterion
)
# build optimizers
self
.
build_lr_scheduler
()
def
setup_input
(
self
,
input
):
self
.
optimizers
[
'optimizer_G'
]
=
build_optimizer
(
cfg
.
optimizer
,
self
.
lr_scheduler
,
parameter_list
=
self
.
nets
[
'netG'
].
parameters
())
self
.
optimizers
[
'optimizer_D'
]
=
build_optimizer
(
cfg
.
optimizer
,
self
.
lr_scheduler
,
parameter_list
=
self
.
nets
[
'netD'
].
parameters
())
def
set_input
(
self
,
input
):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
Parameters:
...
@@ -131,7 +133,7 @@ class GANModel(BaseModel):
...
@@ -131,7 +133,7 @@ class GANModel(BaseModel):
self
.
loss_D_real
=
self
.
criterionGAN
(
pred_real
,
True
,
True
)
self
.
loss_D_real
=
self
.
criterionGAN
(
pred_real
,
True
,
True
)
# combine loss and calculate gradients
# combine loss and calculate gradients
if
self
.
c
fg
.
model
.
gan_mode
in
[
'vanilla'
,
'lsgan'
]:
if
self
.
c
riterionGAN
.
gan_mode
in
[
'vanilla'
,
'lsgan'
]:
self
.
loss_D
=
self
.
loss_D
+
(
self
.
loss_D_fake
+
self
.
loss_D
=
self
.
loss_D
+
(
self
.
loss_D_fake
+
self
.
loss_D_real
)
*
0.5
self
.
loss_D_real
)
*
0.5
else
:
else
:
...
@@ -159,34 +161,34 @@ class GANModel(BaseModel):
...
@@ -159,34 +161,34 @@ class GANModel(BaseModel):
self
.
losses
[
'G_adv_loss'
]
=
self
.
loss_G_GAN
self
.
losses
[
'G_adv_loss'
]
=
self
.
loss_G_GAN
def
optimize_parameters
(
self
):
def
train_iter
(
self
,
optimizers
=
None
):
# compute fake images: G(imgs)
# compute fake images: G(imgs)
self
.
forward
()
self
.
forward
()
# update D
# update D
self
.
set_requires_grad
(
self
.
nets
[
'netD'
],
True
)
self
.
set_requires_grad
(
self
.
nets
[
'netD'
],
True
)
self
.
optimizers
[
'optimizer_D'
].
clear_grad
()
optimizers
[
'optimizer_D'
].
clear_grad
()
self
.
backward_D
()
self
.
backward_D
()
self
.
optimizers
[
'optimizer_D'
].
step
()
optimizers
[
'optimizer_D'
].
step
()
self
.
set_requires_grad
(
self
.
nets
[
'netD'
],
False
)
self
.
set_requires_grad
(
self
.
nets
[
'netD'
],
False
)
# weight clip
# weight clip
if
self
.
c
fg
.
model
.
gan_mode
==
'wgan'
:
if
self
.
c
riterionGAN
.
gan_mode
==
'wgan'
:
with
paddle
.
no_grad
():
with
paddle
.
no_grad
():
for
p
in
self
.
nets
[
'netD'
].
parameters
():
for
p
in
self
.
nets
[
'netD'
].
parameters
():
p
[:]
=
p
.
clip
(
-
0.01
,
0.01
)
p
[:]
=
p
.
clip
(
-
0.01
,
0.01
)
if
self
.
step
%
self
.
n_critic
==
0
:
if
self
.
iter
>
self
.
disc_start_iters
and
self
.
iter
%
self
.
disc_iters
==
0
:
# update G
# update G
self
.
optimizers
[
'optimizer_G'
].
clear_grad
()
optimizers
[
'optimizer_G'
].
clear_grad
()
self
.
backward_G
()
self
.
backward_G
()
self
.
optimizers
[
'optimizer_G'
].
step
()
optimizers
[
'optimizer_G'
].
step
()
if
self
.
step
%
self
.
visual_interval
==
0
:
if
self
.
iter
%
self
.
visual_interval
==
0
:
with
paddle
.
no_grad
():
with
paddle
.
no_grad
():
self
.
visual_items
[
'fixed_generated_imgs'
]
=
make_grid
(
self
.
visual_items
[
'fixed_generated_imgs'
]
=
make_grid
(
self
.
nets
[
'netG'
](
*
self
.
G_fixed_inputs
),
self
.
nets
[
'netG'
](
*
self
.
G_fixed_inputs
),
self
.
samples_every_row
)
self
.
samples_every_row
)
self
.
step
+=
1
self
.
iter
+=
1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录