未验证 提交 e41decb6 编写于 作者: L LielinJiang 提交者: GitHub

Merge pull request #26 from LielinJiang/adapt-to-2.0-api-0920

Fix nan when api adapt to 2.0-beta
......@@ -25,7 +25,7 @@ dataset:
train:
name: PairedDataset
dataroot: data/cityscapes
num_workers: 4
num_workers: 0
phase: train
max_dataset_size: inf
direction: BtoA
......
......@@ -56,8 +56,8 @@ class DictDataLoader():
self.dataset = DictDataset(dataset)
place = paddle.fluid.CUDAPlace(ParallelEnv().dev_id) \
if ParallelEnv().nranks > 1 else paddle.fluid.CUDAPlace(0)
place = paddle.CUDAPlace(ParallelEnv().dev_id) \
if ParallelEnv().nranks > 1 else paddle.CUDAPlace(0)
sampler = DistributedBatchSampler(self.dataset,
batch_size=batch_size,
......
......@@ -13,6 +13,7 @@ from ..utils.visual import tensor2img, save_image
from ..utils.filesystem import save, load, makedirs
from ..metric.psnr_ssim import calculate_psnr, calculate_ssim
class Trainer:
def __init__(self, cfg):
......@@ -51,7 +52,6 @@ class Trainer:
self.time_count = {}
self.best_metric = {}
def distributed_data_parallel(self):
strategy = paddle.distributed.prepare_context()
for name in self.model.model_names:
......@@ -82,6 +82,7 @@ class Trainer:
self.visual('visual_train')
step_start_time = time.time()
self.logger.info('train one epoch time: {}'.format(time.time() -
start_time))
if self.validate_interval > -1 and epoch % self.validate_interval:
......@@ -93,7 +94,8 @@ class Trainer:
def validate(self):
if not hasattr(self, 'val_dataloader'):
self.val_dataloader = build_dataloader(self.cfg.dataset.val, is_train=False)
self.val_dataloader = build_dataloader(self.cfg.dataset.val,
is_train=False)
metric_result = {}
......@@ -106,7 +108,7 @@ class Trainer:
visual_results = {}
current_paths = self.model.get_image_paths()
current_visuals = self.model.get_current_visuals()
for j in range(len(current_paths)):
short_path = os.path.basename(current_paths[j])
basename = os.path.splitext(short_path)[0]
......@@ -115,26 +117,38 @@ class Trainer:
visual_results.update({name: img_tensor[j]})
if 'psnr' in self.cfg.validate.metrics:
if 'psnr' not in metric_result:
metric_result['psnr'] = calculate_psnr(tensor2img(current_visuals['output'][j], (0., 1.)), tensor2img(current_visuals['gt'][j], (0., 1.)), **self.cfg.validate.metrics.psnr)
metric_result['psnr'] = calculate_psnr(
tensor2img(current_visuals['output'][j], (0., 1.)),
tensor2img(current_visuals['gt'][j], (0., 1.)),
**self.cfg.validate.metrics.psnr)
else:
metric_result['psnr'] += calculate_psnr(tensor2img(current_visuals['output'][j], (0., 1.)), tensor2img(current_visuals['gt'][j], (0., 1.)), **self.cfg.validate.metrics.psnr)
metric_result['psnr'] += calculate_psnr(
tensor2img(current_visuals['output'][j], (0., 1.)),
tensor2img(current_visuals['gt'][j], (0., 1.)),
**self.cfg.validate.metrics.psnr)
if 'ssim' in self.cfg.validate.metrics:
if 'ssim' not in metric_result:
metric_result['ssim'] = calculate_ssim(tensor2img(current_visuals['output'][j], (0., 1.)), tensor2img(current_visuals['gt'][j], (0., 1.)), **self.cfg.validate.metrics.ssim)
metric_result['ssim'] = calculate_ssim(
tensor2img(current_visuals['output'][j], (0., 1.)),
tensor2img(current_visuals['gt'][j], (0., 1.)),
**self.cfg.validate.metrics.ssim)
else:
metric_result['ssim'] += calculate_ssim(tensor2img(current_visuals['output'][j], (0., 1.)), tensor2img(current_visuals['gt'][j], (0., 1.)), **self.cfg.validate.metrics.ssim)
metric_result['ssim'] += calculate_ssim(
tensor2img(current_visuals['output'][j], (0., 1.)),
tensor2img(current_visuals['gt'][j], (0., 1.)),
**self.cfg.validate.metrics.ssim)
self.visual('visual_val', visual_results=visual_results)
if i % self.log_interval == 0:
self.logger.info('val iter: [%d/%d]' %
(i, len(self.val_dataloader)))
for metric_name in metric_result.keys():
metric_result[metric_name] /= len(self.val_dataloader.dataset)
self.logger.info('Epoch {} validate end: {}'.format(self.current_epoch, metric_result))
self.logger.info('Epoch {} validate end: {}'.format(
self.current_epoch, metric_result))
def test(self):
if not hasattr(self, 'test_dataloader'):
......@@ -266,6 +280,7 @@ class Trainer:
for name in self.model.model_names:
if isinstance(name, str):
self.logger.info('laod model {} {} params!'.format(self.cfg.model.name, 'net' + name))
self.logger.info('laod model {} {} params!'.format(
self.cfg.model.name, 'net' + name))
net = getattr(self.model, 'net' + name)
net.set_dict(state_dicts['net' + name])
import paddle
import paddle.nn as nn
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
__all__ = [
'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
]
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias_attr=False)
return nn.Conv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False)
class BasicBlock(paddle.fluid.Layer):
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
......@@ -44,17 +48,24 @@ class BasicBlock(paddle.fluid.Layer):
return out
class Bottleneck(paddle.fluid.Layer):
class Bottleneck(nn.Layer):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias_attr=False)
self.bn1 = nn.BatchNorm(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias_attr=False)
self.conv2 = nn.Conv2d(planes,
planes,
kernel_size=3,
stride=stride,
padding=1,
bias_attr=False)
self.bn2 = nn.BatchNorm(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias_attr=False)
self.conv3 = nn.Conv2d(planes,
planes * 4,
kernel_size=1,
bias_attr=False)
self.bn3 = nn.BatchNorm(planes * 4)
self.relu = nn.ReLU()
self.downsample = downsample
......@@ -82,12 +93,15 @@ class Bottleneck(paddle.fluid.Layer):
return out
class ResNet(paddle.fluid.Layer):
class ResNet(nn.Layer):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
self.conv1 = nn.Conv2d(3,
64,
kernel_size=7,
stride=2,
padding=3,
bias_attr=False)
self.bn1 = nn.BatchNorm(64)
self.relu = nn.ReLU()
......@@ -103,8 +117,11 @@ class ResNet(paddle.fluid.Layer):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias_attr=False),
nn.Conv2d(self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias_attr=False),
nn.BatchNorm(planes * block.expansion),
)
......
import paddle
import functools
import numpy as np
import paddle.nn as nn
from ...modules.nn import ReflectionPad2d, LeakyReLU, Dropout, BCEWithLogitsLoss, Pad2D, MSELoss
import paddle
import paddle.nn as nn
from ...modules.norm import build_norm_layer
from .builder import DISCRIMINATORS
@DISCRIMINATORS.register()
class NLayerDiscriminator(paddle.fluid.dygraph.Layer):
class NLayerDiscriminator(nn.Layer):
"""Defines a PatchGAN discriminator"""
def __init__(self, input_nc, ndf=64, n_layers=3, norm_type='instance'):
"""Construct a PatchGAN discriminator
......@@ -24,36 +22,51 @@ class NLayerDiscriminator(paddle.fluid.dygraph.Layer):
"""
super(NLayerDiscriminator, self).__init__()
norm_layer = build_norm_layer(norm_type)
if type(norm_layer) == functools.partial:
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm
else:
use_bias = norm_layer == nn.InstanceNorm
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), LeakyReLU(0.2, True)]
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
nf_mult = min(2**n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias_attr=use_bias),
nn.Conv2d(ndf * nf_mult_prev,
ndf * nf_mult,
kernel_size=kw,
stride=2,
padding=padw,
bias_attr=use_bias),
norm_layer(ndf * nf_mult),
LeakyReLU(0.2, True)
nn.LeakyReLU(0.2)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
nf_mult = min(2**n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias_attr=use_bias),
nn.Conv2d(ndf * nf_mult_prev,
ndf * nf_mult,
kernel_size=kw,
stride=1,
padding=padw,
bias_attr=use_bias),
norm_layer(ndf * nf_mult),
LeakyReLU(0.2, True)
nn.LeakyReLU(0.2)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
sequence += [
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
]
self.model = nn.Sequential(*sequence)
def forward(self, input):
"""Standard forward."""
return self.model(input)
\ No newline at end of file
return self.model(input)
......@@ -432,8 +432,7 @@ class SelfAttention(nn.Layer):
self.key = conv1d(n_channels, n_channels // 8)
self.value = conv1d(n_channels, n_channels)
self.gamma = self.create_parameter(
shape=[1],
default_initializer=paddle.fluid.initializer.Constant(
shape=[1], default_initializer=paddle.nn.initializer.Constant(
0.0)) #nn.Parameter(tensor([0.]))
def forward(self, x):
......
......@@ -2,43 +2,79 @@ import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class TempConv(nn.Layer):
def __init__(self, in_planes, out_planes, kernel_size=(1,3,3), stride=(1,1,1), padding=(0,1,1) ):
super(TempConv, self).__init__()
self.conv3d = nn.Conv3d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm( out_planes )
def forward(self, x):
return F.elu( self.bn(self.conv3d(x)))
def __init__(self,
in_planes,
out_planes,
kernel_size=(1, 3, 3),
stride=(1, 1, 1),
padding=(0, 1, 1)):
super(TempConv, self).__init__()
self.conv3d = nn.Conv3d(in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding)
self.bn = nn.BatchNorm(out_planes)
def forward(self, x):
return F.elu(self.bn(self.conv3d(x)))
class Upsample(nn.Layer):
def __init__(self, in_planes, out_planes, scale_factor=(1,2,2)):
super(Upsample, self).__init__()
self.scale_factor = scale_factor
self.conv3d = nn.Conv3d( in_planes, out_planes, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
self.bn = nn.BatchNorm( out_planes )
def forward(self, x):
out_size = x.shape[2:]
for i in range(3):
out_size[i] = self.scale_factor[i] * out_size[i]
return F.elu( self.bn( self.conv3d( F.interpolate(x, size=out_size, mode='trilinear', align_corners=False, data_format='NCDHW', align_mode=0))))
def __init__(self, in_planes, out_planes, scale_factor=(1, 2, 2)):
super(Upsample, self).__init__()
self.scale_factor = scale_factor
self.conv3d = nn.Conv3d(in_planes,
out_planes,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1))
self.bn = nn.BatchNorm(out_planes)
def forward(self, x):
out_size = x.shape[2:]
for i in range(3):
out_size[i] = self.scale_factor[i] * out_size[i]
return F.elu(
self.bn(
self.conv3d(
F.interpolate(x,
size=out_size,
mode='trilinear',
align_corners=False,
data_format='NCDHW',
align_mode=0))))
class UpsampleConcat(nn.Layer):
def __init__(self, in_planes_up, in_planes_flat, out_planes):
super(UpsampleConcat, self).__init__()
self.conv3d = TempConv( in_planes_up + in_planes_flat, out_planes, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
def forward(self, x1, x2):
scale_factor=(1,2,2)
def __init__(self, in_planes_up, in_planes_flat, out_planes):
super(UpsampleConcat, self).__init__()
self.conv3d = TempConv(in_planes_up + in_planes_flat,
out_planes,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1))
def forward(self, x1, x2):
scale_factor = (1, 2, 2)
out_size = x1.shape[2:]
for i in range(3):
out_size[i] = scale_factor[i] * out_size[i]
x1 = F.interpolate(x1, size=out_size, mode='trilinear', align_corners=False, data_format='NCDHW', align_mode=0)
x1 = F.interpolate(x1,
size=out_size,
mode='trilinear',
align_corners=False,
data_format='NCDHW',
align_mode=0)
x = paddle.concat([x1, x2], axis=1)
return self.conv3d(x)
class SourceReferenceAttention(paddle.fluid.dygraph.Layer):
class SourceReferenceAttention(nn.Layer):
"""
Source-Reference Attention Layer
"""
......@@ -51,137 +87,166 @@ class SourceReferenceAttention(paddle.fluid.dygraph.Layer):
in_planes_r: int
Number of input reference feature vector channels.
"""
super(SourceReferenceAttention,self).__init__()
super(SourceReferenceAttention, self).__init__()
self.query_conv = nn.Conv3d(in_channels=in_planes_s,
out_channels=in_planes_s//8, kernel_size=1 )
self.key_conv = nn.Conv3d(in_channels=in_planes_r,
out_channels=in_planes_r//8, kernel_size=1 )
out_channels=in_planes_s // 8,
kernel_size=1)
self.key_conv = nn.Conv3d(in_channels=in_planes_r,
out_channels=in_planes_r // 8,
kernel_size=1)
self.value_conv = nn.Conv3d(in_channels=in_planes_r,
out_channels=in_planes_r, kernel_size=1 )
self.gamma = self.create_parameter(shape=[1], dtype=self.query_conv.weight.dtype,
default_initializer=paddle.fluid.initializer.Constant(0.0))
out_channels=in_planes_r,
kernel_size=1)
self.gamma = self.create_parameter(
shape=[1],
dtype=self.query_conv.weight.dtype,
default_initializer=nn.initializer.Constant(0.0))
def forward(self, source, reference):
s_batchsize, sC, sT, sH, sW = source.shape
r_batchsize, rC, rT, rH, rW = reference.shape
proj_query = paddle.reshape(self.query_conv(source), [s_batchsize,-1,sT*sH*sW])
proj_query = paddle.reshape(self.query_conv(source),
[s_batchsize, -1, sT * sH * sW])
proj_query = paddle.transpose(proj_query, [0, 2, 1])
proj_key = paddle.reshape(self.key_conv(reference), [r_batchsize,-1,rT*rW*rH])
energy = paddle.bmm( proj_query, proj_key )
attention = F.softmax(energy)
proj_value = paddle.reshape(self.value_conv(reference), [r_batchsize,-1,rT*rH*rW])
out = paddle.bmm(proj_value,paddle.transpose(attention, [0,2,1]))
out = paddle.reshape(out, [s_batchsize, sC, sT, sH, sW])
out = self.gamma*out + source
proj_key = paddle.reshape(self.key_conv(reference),
[r_batchsize, -1, rT * rW * rH])
energy = paddle.bmm(proj_query, proj_key)
attention = F.softmax(energy)
proj_value = paddle.reshape(self.value_conv(reference),
[r_batchsize, -1, rT * rH * rW])
out = paddle.bmm(proj_value, paddle.transpose(attention, [0, 2, 1]))
out = paddle.reshape(out, [s_batchsize, sC, sT, sH, sW])
out = self.gamma * out + source
return out, attention
class NetworkR( nn.Layer ):
def __init__(self):
super(NetworkR, self).__init__()
self.layers = nn.Sequential(
nn.ReplicationPad3d((1,1,1,1,1,1)),
TempConv( 1, 64, kernel_size=(3,3,3), stride=(1,2,2), padding=(0,0,0) ),
TempConv( 64, 128, kernel_size=(3,3,3), padding=(1,1,1) ),
TempConv( 128, 128, kernel_size=(3,3,3), padding=(1,1,1) ),
TempConv( 128, 256, kernel_size=(3,3,3), stride=(1,2,2), padding=(1,1,1) ),
TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
Upsample( 256, 128 ),
TempConv( 128, 64, kernel_size=(3,3,3), padding=(1,1,1) ),
TempConv( 64, 64, kernel_size=(3,3,3), padding=(1,1,1) ),
Upsample( 64, 16 ),
nn.Conv3d( 16, 1, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
)
def forward(self, x):
return paddle.clip((x + paddle.fluid.layers.tanh( self.layers( ((x * 1).detach())-0.4462414 ) )), 0.0, 1.0)
class NetworkC( nn.Layer ):
def __init__(self):
super(NetworkC, self).__init__()
self.down1 = nn.Sequential(
nn.ReplicationPad3d((1,1,1,1,0,0)),
TempConv( 1, 64, stride=(1,2,2), padding=(0,0,0) ),
TempConv( 64, 128 ),
TempConv( 128, 128 ),
TempConv( 128, 256, stride=(1,2,2) ),
TempConv( 256, 256 ),
TempConv( 256, 256 ),
TempConv( 256, 512, stride=(1,2,2) ),
TempConv( 512, 512 ),
TempConv( 512, 512 )
)
self.flat = nn.Sequential(
TempConv( 512, 512 ),
TempConv( 512, 512 )
)
self.down2 = nn.Sequential(
TempConv( 512, 512, stride=(1,2,2) ),
TempConv( 512, 512 ),
)
self.stattn1 = SourceReferenceAttention( 512, 512 ) # Source-Reference Attention
self.stattn2 = SourceReferenceAttention( 512, 512 ) # Source-Reference Attention
self.selfattn1 = SourceReferenceAttention( 512, 512 ) # Self Attention
self.conv1 = TempConv( 512, 512 )
self.up1 = UpsampleConcat( 512, 512, 512 ) # 1/8
self.selfattn2 = SourceReferenceAttention( 512, 512 ) # Self Attention
self.conv2 = TempConv( 512, 256, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
self.up2 = nn.Sequential(
Upsample( 256, 128 ), # 1/4
TempConv( 128, 64, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
)
self.up3 = nn.Sequential(
Upsample( 64, 32 ), # 1/2
TempConv( 32, 16, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
)
self.up4 = nn.Sequential(
Upsample( 16, 8 ), # 1/1
nn.Conv3d( 8, 2, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
)
self.reffeatnet1 = nn.Sequential(
TempConv( 3, 64, stride=(1,2,2) ),
TempConv( 64, 128 ),
TempConv( 128, 128 ),
TempConv( 128, 256, stride=(1,2,2) ),
TempConv( 256, 256 ),
TempConv( 256, 256 ),
TempConv( 256, 512, stride=(1,2,2) ),
TempConv( 512, 512 ),
TempConv( 512, 512 ),
)
self.reffeatnet2 = nn.Sequential(
TempConv( 512, 512, stride=(1,2,2) ),
TempConv( 512, 512 ),
TempConv( 512, 512 ),
)
def forward(self, x, x_refs=None):
x1 = self.down1( x - 0.4462414 )
if x_refs is not None:
x_refs = paddle.transpose(x_refs, [0, 2, 1, 3, 4]) # [B,T,C,H,W] --> [B,C,T,H,W]
reffeat = self.reffeatnet1( x_refs-0.48 )
x1, _ = self.stattn1( x1, reffeat )
x2 = self.flat( x1 )
out = self.down2( x1 )
if x_refs is not None:
reffeat2 = self.reffeatnet2( reffeat )
out, _ = self.stattn2( out, reffeat2 )
out = self.conv1( out )
out, _ = self.selfattn1( out, out )
out = self.up1( out, x2 )
out, _ = self.selfattn2( out, out )
out = self.conv2( out )
out = self.up2( out )
out = self.up3( out )
out = self.up4( out )
return F.sigmoid( out )
\ No newline at end of file
class NetworkR(nn.Layer):
def __init__(self):
super(NetworkR, self).__init__()
self.layers = nn.Sequential(
nn.ReplicationPad3d((1, 1, 1, 1, 1, 1)),
TempConv(1,
64,
kernel_size=(3, 3, 3),
stride=(1, 2, 2),
padding=(0, 0, 0)),
TempConv(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
TempConv(128, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
TempConv(128,
256,
kernel_size=(3, 3, 3),
stride=(1, 2, 2),
padding=(1, 1, 1)),
TempConv(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
TempConv(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
TempConv(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
TempConv(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
Upsample(256, 128),
TempConv(128, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
TempConv(64, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1)),
Upsample(64, 16),
nn.Conv3d(16,
1,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1)))
def forward(self, x):
return paddle.clip(
(x + F.tanh(self.layers(((x * 1).detach()) - 0.4462414))), 0.0, 1.0)
class NetworkC(nn.Layer):
def __init__(self):
super(NetworkC, self).__init__()
self.down1 = nn.Sequential(
nn.ReplicationPad3d((1, 1, 1, 1, 0, 0)),
TempConv(1, 64, stride=(1, 2, 2), padding=(0, 0, 0)),
TempConv(64, 128), TempConv(128, 128),
TempConv(128, 256, stride=(1, 2, 2)), TempConv(256, 256),
TempConv(256, 256), TempConv(256, 512, stride=(1, 2, 2)),
TempConv(512, 512), TempConv(512, 512))
self.flat = nn.Sequential(TempConv(512, 512), TempConv(512, 512))
self.down2 = nn.Sequential(
TempConv(512, 512, stride=(1, 2, 2)),
TempConv(512, 512),
)
self.stattn1 = SourceReferenceAttention(
512, 512) # Source-Reference Attention
self.stattn2 = SourceReferenceAttention(
512, 512) # Source-Reference Attention
self.selfattn1 = SourceReferenceAttention(512, 512) # Self Attention
self.conv1 = TempConv(512, 512)
self.up1 = UpsampleConcat(512, 512, 512) # 1/8
self.selfattn2 = SourceReferenceAttention(512, 512) # Self Attention
self.conv2 = TempConv(512,
256,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1))
self.up2 = nn.Sequential(
Upsample(256, 128), # 1/4
TempConv(128,
64,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1)))
self.up3 = nn.Sequential(
Upsample(64, 32), # 1/2
TempConv(32,
16,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1)))
self.up4 = nn.Sequential(
Upsample(16, 8), # 1/1
nn.Conv3d(8,
2,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding=(1, 1, 1)))
self.reffeatnet1 = nn.Sequential(
TempConv(3, 64, stride=(1, 2, 2)),
TempConv(64, 128),
TempConv(128, 128),
TempConv(128, 256, stride=(1, 2, 2)),
TempConv(256, 256),
TempConv(256, 256),
TempConv(256, 512, stride=(1, 2, 2)),
TempConv(512, 512),
TempConv(512, 512),
)
self.reffeatnet2 = nn.Sequential(
TempConv(512, 512, stride=(1, 2, 2)),
TempConv(512, 512),
TempConv(512, 512),
)
def forward(self, x, x_refs=None):
x1 = self.down1(x - 0.4462414)
if x_refs is not None:
x_refs = paddle.transpose(
x_refs, [0, 2, 1, 3, 4]) # [B,T,C,H,W] --> [B,C,T,H,W]
reffeat = self.reffeatnet1(x_refs - 0.48)
x1, _ = self.stattn1(x1, reffeat)
x2 = self.flat(x1)
out = self.down2(x1)
if x_refs is not None:
reffeat2 = self.reffeatnet2(reffeat)
out, _ = self.stattn2(out, reffeat2)
out = self.conv1(out)
out, _ = self.selfattn1(out, out)
out = self.up1(out, x2)
out, _ = self.selfattn2(out, out)
out = self.conv2(out)
out = self.up2(out)
out = self.up3(out)
out = self.up4(out)
return F.sigmoid(out)
......@@ -2,20 +2,25 @@ import paddle
import paddle.nn as nn
import functools
from ...modules.nn import ReflectionPad2d, LeakyReLU, Tanh, Dropout, BCEWithLogitsLoss, Pad2D, MSELoss
from ...modules.norm import build_norm_layer
from .builder import GENERATORS
@GENERATORS.register()
class ResnetGenerator(paddle.fluid.dygraph.Layer):
class ResnetGenerator(nn.Layer):
"""Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
"""
def __init__(self, input_nc, output_nc, ngf=64, norm_type='instance', use_dropout=False, n_blocks=6, padding_type='reflect'):
def __init__(self,
input_nc,
output_nc,
ngf=64,
norm_type='instance',
use_dropout=False,
n_blocks=6,
padding_type='reflect'):
"""Construct a Resnet-based generator
Args:
......@@ -27,7 +32,7 @@ class ResnetGenerator(paddle.fluid.dygraph.Layer):
n_blocks (int) -- the number of ResNet blocks
padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
"""
assert(n_blocks >= 0)
assert (n_blocks >= 0)
super(ResnetGenerator, self).__init__()
norm_layer = build_norm_layer(norm_type)
......@@ -36,35 +41,56 @@ class ResnetGenerator(paddle.fluid.dygraph.Layer):
else:
use_bias = norm_layer == nn.InstanceNorm
model = [ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias_attr=use_bias),
norm_layer(ngf),
nn.ReLU()]
model = [
nn.ReflectionPad2d([3, 3, 3, 3]),
nn.Conv2d(input_nc,
ngf,
kernel_size=7,
padding=0,
bias_attr=use_bias),
norm_layer(ngf),
nn.ReLU()
]
n_downsampling = 2
for i in range(n_downsampling): # add downsampling layers
mult = 2 ** i
mult = 2**i
model += [
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias_attr=use_bias),
norm_layer(ngf * mult * 2),
nn.ReLU()]
mult = 2 ** n_downsampling
for i in range(n_blocks): # add ResNet blocks
nn.Conv2d(ngf * mult,
ngf * mult * 2,
kernel_size=3,
stride=2,
padding=1,
bias_attr=use_bias),
norm_layer(ngf * mult * 2),
nn.ReLU()
]
mult = 2**n_downsampling
for i in range(n_blocks): # add ResNet blocks
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
model += [
ResnetBlock(ngf * mult,
padding_type=padding_type,
norm_layer=norm_layer,
use_dropout=use_dropout,
use_bias=use_bias)
]
for i in range(n_downsampling): # add upsampling layers
mult = 2 ** (n_downsampling - i)
mult = 2**(n_downsampling - i)
model += [
nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=2,
padding=1,
output_padding=1,
bias_attr=use_bias),
norm_layer(int(ngf * mult / 2)),
nn.ReLU()]
model += [ReflectionPad2d(3)]
nn.ConvTranspose2d(ngf * mult,
int(ngf * mult / 2),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
bias_attr=use_bias),
norm_layer(int(ngf * mult / 2)),
nn.ReLU()
]
model += [nn.ReflectionPad2d([3, 3, 3, 3])]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
model += [nn.Tanh()]
......@@ -75,9 +101,8 @@ class ResnetGenerator(paddle.fluid.dygraph.Layer):
return self.model(x)
class ResnetBlock(paddle.fluid.dygraph.Layer):
class ResnetBlock(nn.Layer):
"""Define a Resnet block"""
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
"""Initialize the Resnet block
......@@ -87,9 +112,11 @@ class ResnetBlock(paddle.fluid.dygraph.Layer):
Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
"""
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer,
use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout,
use_bias):
"""Construct a convolutional block.
Parameters:
......@@ -104,28 +131,37 @@ class ResnetBlock(paddle.fluid.dygraph.Layer):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [ReflectionPad2d(1)]
conv_block += [nn.ReflectionPad2d([1, 1, 1, 1])]
elif padding_type == 'replicate':
conv_block += [ReplicationPad2d(1)]
conv_block += [nn.ReplicationPad2d([1, 1, 1, 1])]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias_attr=use_bias), norm_layer(dim), nn.ReLU()]
raise NotImplementedError('padding [%s] is not implemented' %
padding_type)
conv_block += [
nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias_attr=use_bias),
norm_layer(dim),
nn.ReLU()
]
if use_dropout:
conv_block += [Dropout(0.5)]
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [ReflectionPad2d(1)]
conv_block += [nn.ReflectionPad2d([1, 1, 1, 1])]
elif padding_type == 'replicate':
conv_block += [ReplicationPad2d(1)]
conv_block += [nn.ReplicationPad2d([1, 1, 1, 1])]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias_attr=use_bias), norm_layer(dim)]
raise NotImplementedError('padding [%s] is not implemented' %
padding_type)
conv_block += [
nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias_attr=use_bias),
norm_layer(dim)
]
return nn.Sequential(*conv_block)
......
import functools
import paddle
import paddle.nn as nn
import functools
from ...modules.nn import ReflectionPad2d, LeakyReLU, Tanh, Dropout
from ...modules.norm import build_norm_layer
from .builder import GENERATORS
@GENERATORS.register()
class UnetGenerator(paddle.fluid.dygraph.Layer):
class UnetGenerator(nn.Layer):
"""Create a Unet-based generator"""
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_type='batch', use_dropout=False):
def __init__(self,
input_nc,
output_nc,
num_downs,
ngf=64,
norm_type='batch',
use_dropout=False):
"""Construct a Unet generator
Args:
input_nc (int) -- the number of channels in input images
......@@ -27,36 +31,64 @@ class UnetGenerator(paddle.fluid.dygraph.Layer):
super(UnetGenerator, self).__init__()
norm_layer = build_norm_layer(norm_type)
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(
ngf * 8,
ngf * 8,
input_nc=None,
submodule=None,
norm_layer=norm_layer,
innermost=True) # add the innermost layer
for i in range(num_downs -
5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(ngf * 8,
ngf * 8,
input_nc=None,
submodule=unet_block,
norm_layer=norm_layer,
use_dropout=use_dropout)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
unet_block = UnetSkipConnectionBlock(ngf * 4,
ngf * 8,
input_nc=None,
submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2,
ngf * 4,
input_nc=None,
submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf,
ngf * 2,
input_nc=None,
submodule=unet_block,
norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc,
ngf,
input_nc=input_nc,
submodule=unet_block,
outermost=True,
norm_layer=norm_layer) # add the outermost layer
def forward(self, input):
"""Standard forward"""
# tmp = self.model._sub_layers['model'][0](input)
# tmp1 = self.model._sub_layers['model'][1](tmp)
# tmp2 = self.model._sub_layers['model'][2](tmp1)
# import pickle
# pickle.dump(tmp2.numpy(), open('/workspace/notebook/align_pix2pix/tmp2-pd.pkl', 'wb'))
# tmp3 = self.model._sub_layers['model'][3](tmp2)
# pickle.dump(tmp3.numpy(), open('/workspace/notebook/align_pix2pix/tmp3-pd.pkl', 'wb'))
# tmp4 = self.model._sub_layers['model'][4](tmp3)
return self.model(input)
class UnetSkipConnectionBlock(paddle.fluid.dygraph.Layer):
class UnetSkipConnectionBlock(nn.Layer):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm, use_dropout=False):
def __init__(self,
outer_nc,
inner_nc,
input_nc=None,
submodule=None,
outermost=False,
innermost=False,
norm_layer=nn.BatchNorm,
use_dropout=False):
"""Construct a Unet submodule with skip connections.
Parameters:
......@@ -77,36 +109,48 @@ class UnetSkipConnectionBlock(paddle.fluid.dygraph.Layer):
use_bias = norm_layer == nn.InstanceNorm
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias_attr=use_bias)
downrelu = LeakyReLU(0.2, True)
downconv = nn.Conv2d(input_nc,
inner_nc,
kernel_size=4,
stride=2,
padding=1,
bias_attr=use_bias)
downrelu = nn.LeakyReLU(0.2)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
uprelu = nn.ReLU()
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
upconv = nn.ConvTranspose2d(inner_nc * 2,
outer_nc,
kernel_size=4,
stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, Tanh()]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias_attr=use_bias)
upconv = nn.ConvTranspose2d(inner_nc,
outer_nc,
kernel_size=4,
stride=2,
padding=1,
bias_attr=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias_attr=use_bias)
upconv = nn.ConvTranspose2d(inner_nc * 2,
outer_nc,
kernel_size=4,
stride=2,
padding=1,
bias_attr=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [Dropout(0.5)]
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
......@@ -115,5 +159,5 @@ class UnetSkipConnectionBlock(paddle.fluid.dygraph.Layer):
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
else: # add skip connections
return paddle.concat([x, self.model(x)], 1)
import paddle
import paddle.nn as nn
import numpy as np
from ..modules.nn import BCEWithLogitsLoss
import paddle
import paddle.nn as nn
class GANLoss(paddle.fluid.dygraph.Layer):
class GANLoss(nn.Layer):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
......@@ -31,7 +29,7 @@ class GANLoss(paddle.fluid.dygraph.Layer):
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = BCEWithLogitsLoss()
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp']:
self.loss = None
else:
......@@ -50,11 +48,17 @@ class GANLoss(paddle.fluid.dygraph.Layer):
if target_is_real:
if not hasattr(self, 'target_real_tensor'):
self.target_real_tensor = paddle.fill_constant(shape=paddle.shape(prediction), value=self.target_real_label, dtype='float32')
self.target_real_tensor = paddle.fill_constant(
shape=paddle.shape(prediction),
value=self.target_real_label,
dtype='float32')
target_tensor = self.target_real_tensor
else:
if not hasattr(self, 'target_fake_tensor'):
self.target_fake_tensor = paddle.fill_constant(shape=paddle.shape(prediction), value=self.target_fake_label, dtype='float32')
self.target_fake_tensor = paddle.fill_constant(
shape=paddle.shape(prediction),
value=self.target_fake_label,
dtype='float32')
target_tensor = self.target_fake_tensor
# target_tensor.stop_gradient = True
......@@ -78,4 +82,4 @@ class GANLoss(paddle.fluid.dygraph.Layer):
loss = -prediction.mean()
else:
loss = prediction.mean()
return loss
\ No newline at end of file
return loss
......@@ -48,6 +48,7 @@ class Pix2PixModel(BaseModel):
self.netD = build_discriminator(opt.model.discriminator)
if self.isTrain:
self.losses = {}
# define loss functions
self.criterionGAN = GANLoss(opt.model.gan_mode)
self.criterionL1 = paddle.nn.L1Loss()
......@@ -77,8 +78,9 @@ class Pix2PixModel(BaseModel):
"""
AtoB = self.opt.dataset.train.direction == 'AtoB'
self.real_A = paddle.to_tensor(input['A' if AtoB else 'B'])
self.real_B = paddle.to_tensor(input['B' if AtoB else 'A'])
self.real_A = paddle.to_variable(input['A' if AtoB else 'B'])
self.real_B = paddle.to_variable(input['B' if AtoB else 'A'])
self.image_paths = input['A_paths' if AtoB else 'B_paths']
def forward(self):
......@@ -118,6 +120,7 @@ class Pix2PixModel(BaseModel):
# Second, G(A) = B
self.loss_G_L1 = self.criterionL1(self.fake_B,
self.real_B) * self.opt.lambda_L1
# combine loss and calculate gradients
self.loss_G = self.loss_G_GAN + self.loss_G_L1
......
import paddle
import paddle.nn as nn
from paddle.fluid.dygraph import Layer
from paddle import fluid
class MSELoss():
def __init__(self):
pass
def __call__(self, prediction, label):
return fluid.layers.mse_loss(prediction, label)
class L1Loss():
def __init__(self):
pass
def __call__(self, prediction, label):
return fluid.layers.reduce_mean(fluid.layers.elementwise_sub(prediction, label, act='abs'))
class ReflectionPad2d(Layer):
def __init__(self, size):
super(ReflectionPad2d, self).__init__()
self.size = size
def forward(self, x):
return fluid.layers.pad2d(x, [self.size] * 4, mode="reflect")
class LeakyReLU(Layer):
def __init__(self, alpha, inplace=False):
super(LeakyReLU, self).__init__()
self.alpha = alpha
def forward(self, x):
return fluid.layers.leaky_relu(x, self.alpha)
class Tanh(Layer):
def __init__(self):
super(Tanh, self).__init__()
def forward(self, x):
return fluid.layers.tanh(x)
class Dropout(Layer):
def __init__(self, prob, mode='upscale_in_train'):
super(Dropout, self).__init__()
self.prob = prob
self.mode = mode
def forward(self, x):
return fluid.layers.dropout(x, self.prob, dropout_implementation=self.mode)
class BCEWithLogitsLoss():
def __init__(self, weight=None, reduction='mean'):
self.weight = weight
self.reduction = 'mean'
def __call__(self, x, label):
out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(x, label)
if self.reduction == 'sum':
return fluid.layers.reduce_sum(out)
elif self.reduction == 'mean':
return fluid.layers.reduce_mean(out)
else:
return out
class _SpectralNorm(paddle.nn.SpectralNorm):
class _SpectralNorm(nn.SpectralNorm):
def __init__(self,
weight_shape,
dim=0,
power_iters=1,
eps=1e-12,
dtype='float32'):
super(_SpectralNorm, self).__init__(weight_shape, dim, power_iters, eps, dtype)
super(_SpectralNorm, self).__init__(weight_shape, dim, power_iters, eps,
dtype)
def forward(self, weight):
paddle.fluid.data_feeder.check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
'SpectralNorm')
inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
out = self._helper.create_variable_for_type_inference(self._dtype)
_power_iters = self._power_iters if self.training else 0
self._helper.append_op(
type="spectral_norm",
inputs=inputs,
outputs={"Out": out, },
attrs={
"dim": self._dim,
"power_iters": _power_iters,
"eps": self._eps,
})
self._helper.append_op(type="spectral_norm",
inputs=inputs,
outputs={
"Out": out,
},
attrs={
"dim": self._dim,
"power_iters": _power_iters,
"eps": self._eps,
})
return out
class Spectralnorm(paddle.nn.Layer):
def __init__(self,
layer,
dim=0,
power_iters=1,
eps=1e-12,
dtype='float32'):
def __init__(self, layer, dim=0, power_iters=1, eps=1e-12, dtype='float32'):
super(Spectralnorm, self).__init__()
self.spectral_norm = _SpectralNorm(layer.weight.shape, dim, power_iters, eps, dtype)
self.spectral_norm = _SpectralNorm(layer.weight.shape, dim, power_iters,
eps, dtype)
self.dim = dim
self.power_iters = power_iters
self.eps = eps
self.layer = layer
weight = layer._parameters['weight']
del layer._parameters['weight']
self.weight_orig = self.create_parameter(weight.shape, dtype=weight.dtype)
self.weight_orig = self.create_parameter(weight.shape,
dtype=weight.dtype)
self.weight_orig.set_value(weight)
def forward(self, x):
weight = self.spectral_norm(self.weight_orig)
self.layer.weight = weight
out = self.layer(x)
return out
def initial_type(
input,
op_type,
fan_out,
init="normal",
use_bias=False,
filter_size=0,
stddev=0.02,
name=None):
if init == "kaiming":
if op_type == 'conv':
fan_in = input.shape[1] * filter_size * filter_size
elif op_type == 'deconv':
fan_in = fan_out * filter_size * filter_size
else:
if len(input.shape) > 2:
fan_in = input.shape[1] * input.shape[2] * input.shape[3]
else:
fan_in = input.shape[1]
bound = 1 / math.sqrt(fan_in)
param_attr = fluid.ParamAttr(
# name=name + "_w",
initializer=fluid.initializer.Uniform(
low=-bound, high=bound))
if use_bias == True:
bias_attr = fluid.ParamAttr(
# name=name + '_b',
initializer=fluid.initializer.Uniform(
low=-bound, high=bound))
else:
bias_attr = False
else:
param_attr = fluid.ParamAttr(
# name=name + "_w",
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=stddev))
if use_bias == True:
bias_attr = fluid.ParamAttr(
# name=name + "_b",
initializer=fluid.initializer.Constant(0.0))
else:
bias_attr = False
return param_attr, bias_attr
class Pad2D(fluid.dygraph.Layer):
def __init__(self, paddings, mode, pad_value=0.0):
super(Pad2D, self).__init__()
self.paddings = paddings
self.mode = mode
def forward(self, x):
return fluid.layers.pad2d(x, self.paddings, self.mode)
\ No newline at end of file
......@@ -3,7 +3,7 @@ import functools
import paddle.nn as nn
class Identity(paddle.fluid.dygraph.Layer):
class Identity(nn.Layer):
def forward(self, x):
return x
......@@ -18,11 +18,28 @@ def build_norm_layer(norm_type='instance'):
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm, param_attr=paddle.ParamAttr(initializer=paddle.fluid.initializer.NormalInitializer(1.0, 0.02)), bias_attr=paddle.ParamAttr(initializer=paddle.fluid.initializer.Constant(0.0)), trainable_statistics=True)
norm_layer = functools.partial(
nn.BatchNorm,
param_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal(1.0, 0.02)),
bias_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(0.0)),
trainable_statistics=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm, param_attr=paddle.ParamAttr(initializer=paddle.fluid.initializer.Constant(1.0), learning_rate=0.0, trainable=False), bias_attr=paddle.ParamAttr(initializer=paddle.fluid.initializer.Constant(0.0), learning_rate=0.0, trainable=False))
norm_layer = functools.partial(
nn.InstanceNorm,
param_attr=paddle.ParamAttr(
initializer=nn.initializer.Constant(1.0),
learning_rate=0.0,
trainable=False),
bias_attr=paddle.ParamAttr(initializer=nn.initializer.Constant(0.0),
learning_rate=0.0,
trainable=False))
elif norm_type == 'none':
def norm_layer(x): return Identity()
def norm_layer(x):
return Identity()
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
\ No newline at end of file
raise NotImplementedError('normalization layer [%s] is not found' %
norm_type)
return norm_layer
......@@ -19,6 +19,6 @@ def setup(args, cfg):
logger.info('Configs: {}'.format(cfg))
place = paddle.fluid.CUDAPlace(ParallelEnv().dev_id) \
if ParallelEnv().nranks > 1 else paddle.fluid.CUDAPlace(0)
place = paddle.CUDAPlace(ParallelEnv().dev_id) \
if ParallelEnv().nranks > 1 else paddle.CUDAPlace(0)
paddle.disable_static(place)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部