Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
e1963bbc
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
1 年多 前同步成功
通知
97
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e1963bbc
编写于
5月 31, 2021
作者:
F
FNRE
提交者:
GitHub
5月 31, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add FID (#327)
* add FID
上级
97c1d594
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
83 addition
and
60 deletion
+83
-60
ppgan/metrics/__init__.py
ppgan/metrics/__init__.py
+1
-0
ppgan/metrics/fid.py
ppgan/metrics/fid.py
+50
-27
ppgan/metrics/inception.py
ppgan/metrics/inception.py
+32
-33
未找到文件。
ppgan/metrics/__init__.py
浏览文件 @
e1963bbc
...
@@ -13,4 +13,5 @@
...
@@ -13,4 +13,5 @@
# limitations under the License.
# limitations under the License.
from
.psnr_ssim
import
PSNR
,
SSIM
from
.psnr_ssim
import
PSNR
,
SSIM
from
.fid
import
FID
from
.builder
import
build_metric
from
.builder
import
build_metric
ppgan/metrics/
compute_
fid.py
→
ppgan/metrics/fid.py
浏览文件 @
e1963bbc
...
@@ -20,7 +20,9 @@ import paddle
...
@@ -20,7 +20,9 @@ import paddle
from
PIL
import
Image
from
PIL
import
Image
from
cv2
import
imread
from
cv2
import
imread
from
scipy
import
linalg
from
scipy
import
linalg
from
inception
import
InceptionV3
from
.inception
import
InceptionV3
from
paddle.utils.download
import
get_weights_path_from_url
from
.builder
import
METRICS
try
:
try
:
from
tqdm
import
tqdm
from
tqdm
import
tqdm
...
@@ -35,6 +37,42 @@ except:
...
@@ -35,6 +37,42 @@ except:
"""
"""
inceptionV3 pretrain model is convert from pytorch, pretrain_model url is https://paddle-gan-models.bj.bcebos.com/params_inceptionV3.tar.gz
inceptionV3 pretrain model is convert from pytorch, pretrain_model url is https://paddle-gan-models.bj.bcebos.com/params_inceptionV3.tar.gz
"""
"""
INCEPTIONV3_WEIGHT_URL
=
"https://paddlegan.bj.bcebos.com/InceptionV3.pdparams"
@
METRICS
.
register
()
class
FID
(
paddle
.
metric
.
Metric
):
def
__init__
(
self
,
batch_size
=
1
,
use_GPU
=
True
,
dims
=
2048
,
premodel_path
=
None
,
model
=
None
):
self
.
batch_size
=
batch_size
self
.
use_GPU
=
use_GPU
self
.
dims
=
dims
self
.
premodel_path
=
premodel_path
if
model
is
None
:
block_idx
=
InceptionV3
.
BLOCK_INDEX_BY_DIM
[
dims
]
model
=
InceptionV3
([
block_idx
])
if
premodel_path
is
None
:
premodel_path
=
get_weights_path_from_url
(
INCEPTIONV3_WEIGHT_URL
)
self
.
model
=
model
param_dict
=
paddle
.
load
(
premodel_path
)
model
.
load_dict
(
param_dict
)
model
.
eval
()
self
.
reset
()
def
reset
(
self
):
self
.
results
=
[]
def
update
(
self
,
preds
,
gts
):
value
=
calculate_fid_given_img
(
preds
,
gts
,
self
.
batch_size
,
self
.
model
,
self
.
use_GPU
,
self
.
dims
)
self
.
results
.
append
(
value
)
def
accumulate
(
self
):
if
len
(
self
.
results
)
<=
0
:
return
0.
return
np
.
mean
(
self
.
results
)
def
name
(
self
):
return
'FID'
def
_calculate_frechet_distance
(
mu1
,
sigma1
,
mu2
,
sigma2
,
eps
=
1e-6
):
def
_calculate_frechet_distance
(
mu1
,
sigma1
,
mu2
,
sigma2
,
eps
=
1e-6
):
...
@@ -71,13 +109,12 @@ def _calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
...
@@ -71,13 +109,12 @@ def _calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
2
*
tr_covmean
)
2
*
tr_covmean
)
def
_get_activations_from_ims
(
img
,
model
,
batch_size
,
dims
,
use_gpu
,
def
_get_activations_from_ims
(
img
,
model
,
batch_size
,
dims
,
use_gpu
):
premodel_path
):
n_batches
=
(
len
(
img
)
+
batch_size
-
1
)
//
batch_size
n_batches
=
(
len
(
img
)
+
batch_size
-
1
)
//
batch_size
n_used_img
=
len
(
img
)
n_used_img
=
len
(
img
)
pred_arr
=
np
.
empty
((
n_used_img
,
dims
))
pred_arr
=
np
.
empty
((
n_used_img
,
dims
))
for
i
in
tqdm
(
range
(
n_batches
)):
for
i
in
tqdm
(
range
(
n_batches
)):
start
=
i
*
batch_size
start
=
i
*
batch_size
end
=
start
+
batch_size
end
=
start
+
batch_size
...
@@ -89,19 +126,13 @@ def _get_activations_from_ims(img, model, batch_size, dims, use_gpu,
...
@@ -89,19 +126,13 @@ def _get_activations_from_ims(img, model, batch_size, dims, use_gpu,
images
/=
255
images
/=
255
images
=
paddle
.
to_tensor
(
images
)
images
=
paddle
.
to_tensor
(
images
)
param_dict
,
_
=
paddle
.
load
(
premodel_path
)
model
.
set_dict
(
param_dict
)
model
.
eval
()
pred
=
model
(
images
)[
0
][
0
]
pred
=
model
(
images
)[
0
][
0
]
pred_arr
[
start
:
end
]
=
pred
.
reshape
(
end
-
start
,
-
1
)
pred_arr
[
start
:
end
]
=
pred
.
reshape
([
end
-
start
,
-
1
]).
cpu
().
numpy
()
return
pred_arr
return
pred_arr
def
_compute_statistic_of_img
(
img
,
model
,
batch_size
,
dims
,
use_gpu
,
def
_compute_statistic_of_img
(
img
,
model
,
batch_size
,
dims
,
use_gpu
):
premodel_path
):
act
=
_get_activations_from_ims
(
img
,
model
,
batch_size
,
dims
,
use_gpu
)
act
=
_get_activations_from_ims
(
img
,
model
,
batch_size
,
dims
,
use_gpu
,
premodel_path
)
mu
=
np
.
mean
(
act
,
axis
=
0
)
mu
=
np
.
mean
(
act
,
axis
=
0
)
sigma
=
np
.
cov
(
act
,
rowvar
=
False
)
sigma
=
np
.
cov
(
act
,
rowvar
=
False
)
return
mu
,
sigma
return
mu
,
sigma
...
@@ -110,22 +141,14 @@ def _compute_statistic_of_img(img, model, batch_size, dims, use_gpu,
...
@@ -110,22 +141,14 @@ def _compute_statistic_of_img(img, model, batch_size, dims, use_gpu,
def
calculate_fid_given_img
(
img_fake
,
def
calculate_fid_given_img
(
img_fake
,
img_real
,
img_real
,
batch_size
,
batch_size
,
use_gpu
,
model
,
dims
,
use_gpu
=
True
,
premodel_path
,
dims
=
2048
):
model
=
None
):
assert
os
.
path
.
exists
(
premodel_path
),
'pretrain_model path {} is not exists! Please download it first'
.
format
(
premodel_path
)
if
model
is
None
:
block_idx
=
InceptionV3
.
BLOCK_INDEX_BY_DIM
[
dims
]
model
=
InceptionV3
([
block_idx
])
m1
,
s1
=
_compute_statistic_of_img
(
img_fake
,
model
,
batch_size
,
dims
,
m1
,
s1
=
_compute_statistic_of_img
(
img_fake
,
model
,
batch_size
,
dims
,
use_gpu
,
premodel_path
)
use_gpu
)
m2
,
s2
=
_compute_statistic_of_img
(
img_real
,
model
,
batch_size
,
dims
,
m2
,
s2
=
_compute_statistic_of_img
(
img_real
,
model
,
batch_size
,
dims
,
use_gpu
,
premodel_path
)
use_gpu
)
fid_value
=
_calculate_frechet_distance
(
m1
,
s1
,
m2
,
s2
)
fid_value
=
_calculate_frechet_distance
(
m1
,
s1
,
m2
,
s2
)
return
fid_value
return
fid_value
...
...
ppgan/metrics/inception.py
浏览文件 @
e1963bbc
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
import
math
import
math
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
from
paddle.nn
import
Conv2D
,
AvgPool2D
,
MaxPool2D
,
BatchNorm
,
Linear
from
paddle.nn
import
Conv2D
,
AvgPool2D
,
MaxPool2D
,
BatchNorm
,
Linear
,
AdaptiveAvgPool2D
__all__
=
[
'InceptionV3'
]
__all__
=
[
'InceptionV3'
]
...
@@ -57,7 +57,7 @@ class InceptionV3(nn.Layer):
...
@@ -57,7 +57,7 @@ class InceptionV3(nn.Layer):
3
,
3
,
padding
=
1
,
padding
=
1
,
name
=
'Conv2d_2b_3x3'
)
name
=
'Conv2d_2b_3x3'
)
self
.
maxpool1
=
MaxPool2D
(
pool_size
=
3
,
pool_
stride
=
2
)
self
.
maxpool1
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
)
block0
=
[
block0
=
[
self
.
Conv2d_1a_3x3
,
self
.
Conv2d_2a_3x3
,
self
.
Conv2d_2b_3x3
,
self
.
Conv2d_1a_3x3
,
self
.
Conv2d_2a_3x3
,
self
.
Conv2d_2b_3x3
,
...
@@ -69,7 +69,7 @@ class InceptionV3(nn.Layer):
...
@@ -69,7 +69,7 @@ class InceptionV3(nn.Layer):
if
self
.
last_needed_block
>=
1
:
if
self
.
last_needed_block
>=
1
:
self
.
Conv2d_3b_1x1
=
ConvBNLayer
(
64
,
80
,
1
,
name
=
'Conv2d_3b_1x1'
)
self
.
Conv2d_3b_1x1
=
ConvBNLayer
(
64
,
80
,
1
,
name
=
'Conv2d_3b_1x1'
)
self
.
Conv2d_4a_3x3
=
ConvBNLayer
(
80
,
192
,
3
,
name
=
'Conv2d_4a_3x3'
)
self
.
Conv2d_4a_3x3
=
ConvBNLayer
(
80
,
192
,
3
,
name
=
'Conv2d_4a_3x3'
)
self
.
maxpool2
=
MaxPool2D
(
pool_size
=
3
,
pool_
stride
=
2
)
self
.
maxpool2
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
)
block1
=
[
self
.
Conv2d_3b_1x1
,
self
.
Conv2d_4a_3x3
,
self
.
maxpool2
]
block1
=
[
self
.
Conv2d_3b_1x1
,
self
.
Conv2d_4a_3x3
,
self
.
maxpool2
]
self
.
blocks
.
append
(
nn
.
Sequential
(
*
block1
))
self
.
blocks
.
append
(
nn
.
Sequential
(
*
block1
))
...
@@ -107,7 +107,7 @@ class InceptionV3(nn.Layer):
...
@@ -107,7 +107,7 @@ class InceptionV3(nn.Layer):
self
.
Mixed_7a
=
InceptionD
(
768
,
name
=
'Mixed_7a'
)
self
.
Mixed_7a
=
InceptionD
(
768
,
name
=
'Mixed_7a'
)
self
.
Mixed_7b
=
Fid_inceptionE_1
(
1280
,
name
=
'Mixed_7b'
)
self
.
Mixed_7b
=
Fid_inceptionE_1
(
1280
,
name
=
'Mixed_7b'
)
self
.
Mixed_7c
=
Fid_inceptionE_2
(
2048
,
name
=
'Mixed_7c'
)
self
.
Mixed_7c
=
Fid_inceptionE_2
(
2048
,
name
=
'Mixed_7c'
)
self
.
avgpool
=
A
vgPool2D
(
global_pooling
=
True
)
self
.
avgpool
=
A
daptiveAvgPool2D
(
output_size
=
1
)
block3
=
[
self
.
Mixed_7a
,
self
.
Mixed_7b
,
self
.
Mixed_7c
,
self
.
avgpool
]
block3
=
[
self
.
Mixed_7a
,
self
.
Mixed_7b
,
self
.
Mixed_7c
,
self
.
avgpool
]
self
.
blocks
.
append
(
nn
.
Sequential
(
*
block3
))
self
.
blocks
.
append
(
nn
.
Sequential
(
*
block3
))
...
@@ -170,9 +170,9 @@ class InceptionA(nn.Layer):
...
@@ -170,9 +170,9 @@ class InceptionA(nn.Layer):
padding
=
1
,
padding
=
1
,
name
=
name
+
'.branch3x3dbl_3'
)
name
=
name
+
'.branch3x3dbl_3'
)
self
.
branch_pool0
=
AvgPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
AvgPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
,
padding
=
1
,
exclusive
=
True
)
exclusive
=
True
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
pool_features
,
pool_features
,
...
@@ -219,7 +219,7 @@ class InceptionB(nn.Layer):
...
@@ -219,7 +219,7 @@ class InceptionB(nn.Layer):
stride
=
2
,
stride
=
2
,
name
=
name
+
'.branch3x3dbl_3'
)
name
=
name
+
'.branch3x3dbl_3'
)
self
.
branch_pool
=
MaxPool2D
(
pool_size
=
3
,
pool_
stride
=
2
)
self
.
branch_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
branch3x3
=
self
.
branch3x3
(
x
)
branch3x3
=
self
.
branch3x3
(
x
)
...
@@ -275,9 +275,9 @@ class InceptionC(nn.Layer):
...
@@ -275,9 +275,9 @@ class InceptionC(nn.Layer):
padding
=
(
0
,
3
),
padding
=
(
0
,
3
),
name
=
name
+
'.branch7x7dbl_5'
)
name
=
name
+
'.branch7x7dbl_5'
)
self
.
branch_pool0
=
AvgPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
AvgPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
,
padding
=
1
,
exclusive
=
True
)
exclusive
=
True
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
192
,
192
,
...
@@ -335,7 +335,7 @@ class InceptionD(nn.Layer):
...
@@ -335,7 +335,7 @@ class InceptionD(nn.Layer):
stride
=
2
,
stride
=
2
,
name
=
name
+
'.branch7x7x3_4'
)
name
=
name
+
'.branch7x7x3_4'
)
self
.
branch_pool
=
MaxPool2D
(
pool_size
=
3
,
pool_
stride
=
2
)
self
.
branch_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
branch3x3
=
self
.
branch3x3_1
(
x
)
branch3x3
=
self
.
branch3x3_1
(
x
)
...
@@ -391,9 +391,9 @@ class InceptionE(nn.Layer):
...
@@ -391,9 +391,9 @@ class InceptionE(nn.Layer):
padding
=
(
1
,
0
),
padding
=
(
1
,
0
),
name
=
name
+
'.branch3x3dbl_3b'
)
name
=
name
+
'.branch3x3dbl_3b'
)
self
.
branch_pool0
=
AvgPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
AvgPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
,
padding
=
1
,
exclusive
=
True
)
exclusive
=
True
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
192
,
192
,
...
@@ -425,7 +425,7 @@ class InceptionAux(nn.Layer):
...
@@ -425,7 +425,7 @@ class InceptionAux(nn.Layer):
def
__init__
(
self
,
in_channels
,
num_classes
,
name
=
None
):
def
__init__
(
self
,
in_channels
,
num_classes
,
name
=
None
):
super
(
InceptionAux
,
self
).
__init__
()
super
(
InceptionAux
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
self
.
pool0
=
AvgPool2D
(
pool_size
=
5
,
pool_
stride
=
3
)
self
.
pool0
=
AvgPool2D
(
kernel_size
=
5
,
stride
=
3
)
self
.
conv0
=
ConvBNLayer
(
in_channels
,
128
,
1
,
name
=
name
+
'.conv0'
)
self
.
conv0
=
ConvBNLayer
(
in_channels
,
128
,
1
,
name
=
name
+
'.conv0'
)
self
.
conv1
=
ConvBNLayer
(
128
,
768
,
5
,
name
=
name
+
'.conv1'
)
self
.
conv1
=
ConvBNLayer
(
128
,
768
,
5
,
name
=
name
+
'.conv1'
)
self
.
pool1
=
AvgPool2D
(
global_pooling
=
True
)
self
.
pool1
=
AvgPool2D
(
global_pooling
=
True
)
...
@@ -475,9 +475,9 @@ class Fid_inceptionA(nn.Layer):
...
@@ -475,9 +475,9 @@ class Fid_inceptionA(nn.Layer):
padding
=
1
,
padding
=
1
,
name
=
name
+
'.branch3x3dbl_3'
)
name
=
name
+
'.branch3x3dbl_3'
)
self
.
branch_pool0
=
AvgPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
AvgPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
,
padding
=
1
,
exclusive
=
True
)
exclusive
=
True
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
pool_features
,
pool_features
,
...
@@ -544,9 +544,9 @@ class Fid_inceptionC(nn.Layer):
...
@@ -544,9 +544,9 @@ class Fid_inceptionC(nn.Layer):
padding
=
(
0
,
3
),
padding
=
(
0
,
3
),
name
=
name
+
'.branch7x7dbl_5'
)
name
=
name
+
'.branch7x7dbl_5'
)
self
.
branch_pool0
=
AvgPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
AvgPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
,
padding
=
1
,
exclusive
=
True
)
exclusive
=
True
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
192
,
192
,
...
@@ -614,9 +614,9 @@ class Fid_inceptionE_1(nn.Layer):
...
@@ -614,9 +614,9 @@ class Fid_inceptionE_1(nn.Layer):
padding
=
(
1
,
0
),
padding
=
(
1
,
0
),
name
=
name
+
'.branch3x3dbl_3b'
)
name
=
name
+
'.branch3x3dbl_3b'
)
self
.
branch_pool0
=
AvgPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
AvgPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
,
padding
=
1
,
exclusive
=
True
)
exclusive
=
True
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
192
,
192
,
...
@@ -685,9 +685,9 @@ class Fid_inceptionE_2(nn.Layer):
...
@@ -685,9 +685,9 @@ class Fid_inceptionE_2(nn.Layer):
padding
=
(
1
,
0
),
padding
=
(
1
,
0
),
name
=
name
+
'.branch3x3dbl_3b'
)
name
=
name
+
'.branch3x3dbl_3b'
)
### same with paper
### same with paper
self
.
branch_pool0
=
MaxPool2D
(
poo
l_size
=
3
,
self
.
branch_pool0
=
MaxPool2D
(
kerne
l_size
=
3
,
pool_
stride
=
1
,
stride
=
1
,
p
ool_p
adding
=
1
)
padding
=
1
)
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
self
.
branch_pool
=
ConvBNLayer
(
in_channels
,
192
,
192
,
1
,
1
,
...
@@ -725,14 +725,13 @@ class ConvBNLayer(nn.Layer):
...
@@ -725,14 +725,13 @@ class ConvBNLayer(nn.Layer):
act
=
'relu'
,
act
=
'relu'
,
name
=
None
):
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
conv
=
Conv2D
(
num
_channels
=
in_channels
,
self
.
conv
=
Conv2D
(
in
_channels
=
in_channels
,
num_filter
s
=
num_filters
,
out_channel
s
=
num_filters
,
filter
_size
=
filter_size
,
kernel
_size
=
filter_size
,
stride
=
stride
,
stride
=
stride
,
padding
=
padding
,
padding
=
padding
,
groups
=
groups
,
groups
=
groups
,
act
=
None
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
name
+
".conv.weight"
),
param_attr
=
paddle
.
ParamAttr
(
name
=
name
+
".conv.weight"
),
bias_attr
=
False
)
bias_attr
=
False
)
self
.
bn
=
BatchNorm
(
num_filters
,
self
.
bn
=
BatchNorm
(
num_filters
,
act
=
act
,
act
=
act
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录