未验证 提交 be30224c 编写于 作者: Q qingqing01 提交者: GitHub

Refine some docs (#65)

* Refine some docs
* Update docs/en_US/data_prepare.md
上级 ac4b41ea
......@@ -34,24 +34,49 @@ PaddleGAN 是一个基于飞桨的生成对抗网络开发工具包.
请参考[安装文档](./docs/zh_CN/install.md)来进行PaddlePaddle和ppgan的安装
## 数据准备
请参考[数据准备](./docs/zh_CN/data_prepare.md) 来准备对应的数据.
## 快速开始
通过ppgan.app接口使用预训练模型:
## 快速开始
训练,预测,推理等请参考 [快速开始](./docs/zh_CN/get_started.md).
```python
from ppgan.apps import RealSRPredictor
sr = RealSRPredictor()
sr.run("docs/imgs/monarch.png")
```
更多训练、评估教程参考:
- [数据准备](./docs/zh_CN/data_prepare.md)
- [训练/评估/推理教程](./docs/zh_CN/get_started.md)
## 模型教程
* [Pixel2Pixel](./docs/zh_CN/tutorials/pix2pix_cyclegan.md)
* [CycleGAN](./docs/zh_CN/tutorials/pix2pix_cyclegan.md)
* [PSGAN](./docs/zh_CN/tutorials/psgan.md)
* [First Order Motion Model](./docs/zh_CN/tutorials/motion_driving.md)
* [视频修复](./docs/zh_CN/tutorials/video_restore.md)
## 许可证书
本项目的发布受[Apache 2.0 license](LICENSE)许可认证。
## 在线体验
通过[AI Studio实训平台](https://aistudio.baidu.com/aistudio/index)在线体验:
|在线教程 | 链接 |
|--------------|-----------|
|老北京视频修复|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/1161285)|
|表情动作迁移-当苏大强唱起unravel |[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/1048840)|
## 版本更新
- v0.1.0 (2020.11.02)
- 初版发布,支持Pixel2Pixel、CycleGAN、PSGAN模型,支持视频插针、超分、老照片/视频上色、视频动作生成等应用。
- 模块化设计,接口简单易用。
## 贡献代码
我们非常欢迎您可以为PaddleGAN提供任何贡献和建议。大多数贡献都需要同意参与者许可协议(CLA)。当提交拉取请求时,CLA机器人会自动检查您是否需要提供CLA。 只需要按照机器人提供的说明进行操作即可。CLA只需要同意一次,就能应用到所有的代码仓库上。关于更多的流程请参考[贡献指南](docs/zh_CN/contribute.md)
## 许可证书
本项目的发布受[Apache 2.0 license](LICENSE)许可认证。
......@@ -37,24 +37,41 @@ changes.
Please refer to [install](./docs/en_US/install.md).
## Data Prepare
Please refer to [data prepare](./docs/en_US/data_prepare.md) for dataset preparation.
## Quick Start
## Get Start
Please refer [get started](./docs/en_US/get_started.md) for the basic usage of PaddleGAN.
Get started through ppgan.app interface:
```python
from ppgan.apps import RealSRPredictor
sr = RealSRPredictor()
sr.run("docs/imgs/monarch.png")
```
More tutorials:
- [Data preparation](./docs/en_US/data_prepare.md)
- [Traning/Evaluating/Testing basic usage](./docs/zh_CN/get_started.md)
## Model Tutorial
## Model tutorial
* [Pixel2Pixel](./docs/en_US/tutorials/pix2pix_cyclegan.md)
* [CycleGAN](./docs/en_US/tutorials/pix2pix_cyclegan.md)
* [PSGAN](./docs/en_US/tutorials/psgan.md)
* [First Order Motion Model](./docs/en_US/tutorials/motion_driving.md)
* [Video restore](./docs/zh_CN/tutorials/video_restore.md)
## License
PaddleGAN is released under the [Apache 2.0 license](LICENSE).
## Changelog
- v0.1.0 (2020.11.02)
- Realse first version, supported models include Pixel2Pixel, CycleGAN, PSGAN. Supported applications include video frame interpolation, super resolution, colorize images and videos, image animation.
- Modular design and friendly interface.
## Contributing
Contributions and suggestions are highly welcomed. Most contributions require you to agree to a [Contributor License Agreement (CLA)](https://cla-assistant.io/PaddlePaddle/PaddleGAN) declaring.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA. Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
For more, please reference [contribution guidelines](docs/en_US/contribute.md).
## License
PaddleGAN is released under the [Apache 2.0 license](LICENSE).
## data prepare
## Data prepare
The config will suppose your data put in `$PaddleGAN/data`. You can symlink your datasets to `$PaddleGAN/data`.
......@@ -28,8 +28,7 @@ PaddleGAN
```
if you put your datasets on other place,for example ```your/data/path```,
you can also change ```dataroot``` in config file:
If you put your datasets on other place,for example ```your/data/path```, you can also change ```dataroot``` in config file:
```
dataset:
......@@ -41,12 +40,12 @@ dataset:
### Datasets of CycleGAN
#### download existed datasets
#### download form website
##### download form website
datasets for CycleGAN you can download from [here](https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/)
Datasets for CycleGAN can be downloaded from [here](https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/)
#### download by script
##### download by script
You can use ```download_cyclegan_data.py``` in ```PaddleGAN/data``` to download datasets you wanted. Supported datasets are: apple2orange, summer2winter_yosemite,horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos, cityscapes。
run following command. Dataset will be downloaded to ```~/.cache/ppgan``` and symlink to ```PaddleGAN/data/``` .
......@@ -55,7 +54,9 @@ python data/download_cyclegan_data.py --name horse2zebra
```
#### custom dataset
Data should be arranged in following way if you use custom dataset.
```
custom_datasets
├── testA
......@@ -66,20 +67,21 @@ custom_datasets
### Datasets of Pix2Pix
#### download existed datasets
#### Download from website
##### download from website
dataset for pix2pix you can download from [here](hhttps://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/)
Dataset for pix2pix can be downloaded from [here](https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/)
#### Download by script
##### download by script
You can use ```download_pix2pix_data.py``` in ```PaddleGAN/data``` to download datasets you wanted. Supported datasets are: apple2orange, summer2winter_yosemite,horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos, cityscapes.
run following command. Dataset will be downloaded to ```~/.cache/ppgan``` and symlink to ```PaddleGAN/data/``` .
Dataset will be downloaded to ```~/.cache/ppgan``` and symlink to ```PaddleGAN/data/``` .
```
python data/download_pix2pix_data.py --name cityscapes
```
#### custom datasets
#### Custom datasets
Data should be arranged in following way if you use custom dataset. And image content shoubld be same with example image.
```
......
......@@ -25,11 +25,24 @@ Note: command above will install paddle with cuda10.2,if your installed cuda i
</code></pre> </details> </td> </tr></tbody></table>
### 2. Install ppgan
### 2. Install through pip
```
# only support Python3
python3 -m pip install --upgrade ppgan
```
Download the examples and configuration files via cloning the source code:
```
git clone https://github.com/PaddlePaddle/PaddleGAN
cd PaddleGAN
```
### 3. Install through source code
```
git clone https://github.com/PaddlePaddle/PaddleGAN
cd PaddleGAN
pip install -v -e . # or "python setup.py develop"
```
......@@ -13,7 +13,10 @@
Users can upload the prepared source image and driving video, then substitute the path of source image and driving video for the `source_image` and `driving_video` parameter in the following running command. It will geneate a video file named `result.mp4` in the `output` folder, which is the animated video file.
```
python -u tools/first-order-demo.py --driving_video ./ravel_10.mp4 --source_image ./sudaqiang.png --relative --adapt_scale
python -u tools/first-order-demo.py \
--driving_video ./ravel_10.mp4 \
--source_image ./sudaqiang.png \
--relative --adapt_scale
```
**params:**
......@@ -29,6 +32,7 @@ python -u tools/first-order-demo.py --driving_video ./ravel_10.mp4 --source_im
## Reference
```
@InProceedings{Siarohin_2019_NeurIPS,
author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
title={First Order Motion Model for Image Animation},
......@@ -36,3 +40,4 @@ python -u tools/first-order-demo.py --driving_video ./ravel_10.mp4 --source_im
month = {December},
year = {2019}
}
```
......@@ -41,19 +41,21 @@ dataset:
### CycleGAN模型相关的数据集下载
#### 已有的数据集下载
#### 从网页下载
##### 从网页下载
cyclgan模型相关的数据集可以在[这里](https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/)下载
##### 使用脚本下载
#### 使用脚本下载
我们在 ```PaddleGAN/data``` 文件夹下提供了一个脚本 ```download_cyclegan_data.py``` 方便下载CycleGAN相关的
数据集。执行如下命令可以下载相关的数据集,目前支持的数据集名称有:apple2orange, summer2winter_yosemite,horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos, cityscapes。
执行如下命令,可以下载对应的数据集到 ```~/.cache/ppgan``` 并软连接到 ```PaddleGAN/data/``` 下。
```
python data/download_cyclegan_data.py --name horse2zebra
```
#### 使用自己的数据集
如果你使用自己的数据集,需要构造成如下目录的格式。注意 ```xxxA``````xxxB```文件数量,文件内容无需一一对应。
```
......@@ -66,20 +68,22 @@ custom_datasets
### Pix2Pix相关的数据集下载
#### 已有的数据集下载
#### 从网页下载
##### 从网页下载
pixel2pixel模型相关的数据集可以在[这里](hhttps://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/)下载
##### 使用脚本下载
#### 使用脚本下载
我们在 ```PaddleGAN/data``` 文件夹下提供了一个脚本 ```download_pix2pix_data.py``` 方便下载pix2pix模型相关的数据集。执行如下命令可以下载相关的数据集,目前支持的数据集名称有:apple2orange, summer2winter_yosemite,horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos, cityscapes。
执行如下命令,可以下载对应的数据集到 ```~/.cache/ppgan``` 并软连接到 ```PaddleGAN/data/``` 下。
```
python data/download_pix2pix_data.py --name cityscapes
```
#### 使用自己的数据集
如果你使用自己的数据集,需要构造成如下目录的格式。同时图片应该制作成下图的样式,即左边为一种风格,另一边为相应转换的风格。
```
......
......@@ -23,8 +23,21 @@ pip install -U paddlepaddle-gpu==2.0.0rc0
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install https://paddle-wheel.bj.bcebos.com/2.0.0-rc0-gpu-cuda9-cudnn7-mkl%2Fpaddlepaddle_gpu-2.0.0rc0.post90-cp36-cp36m-linux_x86_64.whl
</code></pre> </details> </td> </tr></tbody></table>
### 2. 通过Pip安装
### 2. 安装ppgan
```
# only support Python3
python3 -m pip install --upgrade ppgan
```
下载示例和配置文件:
```
git clone https://github.com/PaddlePaddle/PaddleGAN
cd PaddleGAN
```
### 3. 通过源码安装PaddleGAN
```
git clone https://github.com/PaddlePaddle/PaddleGAN
......
......@@ -17,7 +17,10 @@ First order motion model的任务是image animation,给定一张源图片,
用户可以上传自己准备的视频和图片,并在如下命令中的source_image参数和driving_video参数分别换成自己的图片和视频路径,然后运行如下命令,就可以完成动作表情迁移,程序运行成功后,会在ouput文件夹生成名为result.mp4的视频文件,该文件即为动作迁移后的视频。本项目中提供了原始图片和驱动视频供展示使用。运行的命令如下所示:
```
python -u tools/first-order-demo.py --driving_video ./ravel_10.mp4 --source_image ./sudaqiang.png --relative --adapt_scale
python -u tools/first-order-demo.py \
--driving_video ./ravel_10.mp4 \
--source_image ./sudaqiang.png \
--relative --adapt_scale
```
**参数说明:**
......@@ -34,6 +37,7 @@ python -u tools/first-order-demo.py --driving_video ./ravel_10.mp4 --source_im
## 参考文献
```
@InProceedings{Siarohin_2019_NeurIPS,
author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
title={First Order Motion Model for Image Animation},
......@@ -41,3 +45,5 @@ python -u tools/first-order-demo.py --driving_video ./ravel_10.mp4 --source_im
month = {December},
year = {2019}
}
```
......@@ -17,6 +17,10 @@ import numpy as np
import paddle
from ..utils.logger import get_logger
logger = get_logger('init')
def _calculate_fan_in_and_fan_out(tensor):
dimensions = len(tensor.shape)
......@@ -65,7 +69,6 @@ def calculate_gain(nonlinearity, param=None):
Args:
nonlinearity: the non-linear function (`nn.functional` name)
param: optional parameter for the non-linear function
"""
linear_fns = [
'linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d',
......@@ -310,5 +313,5 @@ def init_weights(net, init_type='normal', init_gain=0.02):
normal_(m.weight, 1.0, init_gain)
constant_(m.bias, 0.0)
print('initialize network with %s' % init_type)
logger.debug('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
......@@ -35,7 +35,7 @@ def setup_logger(output=None, name="ppgan"):
logging.Logger: a logger
"""
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.setLevel(logging.INFO)
logger.propagate = False
plain_formatter = logging.Formatter(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册