Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
99d09216
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
大约 2 年 前同步成功
通知
100
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
99d09216
编写于
9月 16, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm unused code
上级
a0a56e75
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
4 addition
and
120 deletion
+4
-120
ppgan/models/sr_model.py
ppgan/models/sr_model.py
+3
-113
ppgan/models/srgan_model.py
ppgan/models/srgan_model.py
+1
-7
未找到文件。
ppgan/models/sr_model.py
浏览文件 @
99d09216
from
collections
import
OrderedDict
from
collections
import
OrderedDict
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
# import torch.nn.parallel as P
# from torch.nn.parallel import DataParallel, DistributedDataParallel
# import models.networks as networks
# import models.lr_scheduler as lr_scheduler
from
.generators.builder
import
build_generator
from
.generators.builder
import
build_generator
from
.discriminators.builder
import
build_discriminator
from
.discriminators.builder
import
build_discriminator
from
..solver
import
build_optimizer
from
..solver
import
build_optimizer
...
@@ -13,8 +10,6 @@ from .losses import GANLoss
...
@@ -13,8 +10,6 @@ from .losses import GANLoss
from
.builder
import
MODELS
from
.builder
import
MODELS
import
importlib
import
importlib
import
mmcv
import
torch
from
collections
import
OrderedDict
from
collections
import
OrderedDict
from
copy
import
deepcopy
from
copy
import
deepcopy
from
os
import
path
as
osp
from
os
import
path
as
osp
...
@@ -24,12 +19,11 @@ from .builder import MODELS
...
@@ -24,12 +19,11 @@ from .builder import MODELS
@
MODELS
.
register
()
@
MODELS
.
register
()
class
SRModel
(
BaseModel
):
class
SRModel
(
BaseModel
):
"""Base SR model for single image super-resolution."""
"""Base SR model for single image super-resolution."""
def
__init__
(
self
,
cfg
):
def
__init__
(
self
,
cfg
):
super
(
SRModel
,
self
).
__init__
(
cfg
)
super
(
SRModel
,
self
).
__init__
(
cfg
)
self
.
model_names
=
[
'G'
]
self
.
model_names
=
[
'G'
]
self
.
netG
=
build_generator
(
cfg
.
model
.
generator
)
self
.
netG
=
build_generator
(
cfg
.
model
.
generator
)
self
.
visual_names
=
[
'lq'
,
'output'
,
'gt'
]
self
.
visual_names
=
[
'lq'
,
'output'
,
'gt'
]
...
@@ -119,7 +113,7 @@ class SRModel(BaseModel):
...
@@ -119,7 +113,7 @@ class SRModel(BaseModel):
def
forward
(
self
):
def
forward
(
self
):
pass
pass
def
test
(
self
):
def
test
(
self
):
"""Forward function used in test time.
"""Forward function used in test time.
"""
"""
...
@@ -137,111 +131,7 @@ class SRModel(BaseModel):
...
@@ -137,111 +131,7 @@ class SRModel(BaseModel):
l_pix
=
self
.
criterionL1
(
self
.
output
,
self
.
gt
)
l_pix
=
self
.
criterionL1
(
self
.
output
,
self
.
gt
)
l_total
+=
l_pix
l_total
+=
l_pix
loss_dict
[
'l_pix'
]
=
l_pix
loss_dict
[
'l_pix'
]
=
l_pix
# perceptual loss
# if self.cri_perceptual:
# l_percep, l_style = self.cri_perceptual(self.output, self.gt)
# if l_percep is not None:
# l_total += l_percep
# loss_dict['l_percep'] = l_percep
# if l_style is not None:
# l_total += l_style
# loss_dict['l_style'] = l_style
l_total
.
backward
()
l_total
.
backward
()
self
.
loss_l_total
=
l_total
self
.
loss_l_total
=
l_total
self
.
optimizer_G
.
step
()
self
.
optimizer_G
.
step
()
# self.log_dict = self.reduce_loss_dict(loss_dict)
# def get_current_visuals(self):
# out_dict = OrderedDict()
# out_dict['lq'] = self.lq.detach().cpu()
# out_dict['result'] = self.output.detach().cpu()
# if hasattr(self, 'gt'):
# out_dict['gt'] = self.gt.detach().cpu()
# return out_dict
# def test(self):
# self.net_g.eval()
# with torch.no_grad():
# self.output = self.net_g(self.lq)
# self.net_g.train()
# def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
# logger = get_root_logger()
# logger.info('Only support single GPU validation.')
# self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
# def nondist_validation(self, dataloader, current_iter, tb_logger,
# save_img):
# dataset_name = dataloader.dataset.opt['name']
# with_metrics = self.opt['val'].get('metrics') is not None
# if with_metrics:
# self.metric_results = {
# metric: 0
# for metric in self.opt['val']['metrics'].keys()
# }
# pbar = ProgressBar(len(dataloader))
# for idx, val_data in enumerate(dataloader):
# img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
# self.feed_data(val_data)
# self.test()
# visuals = self.get_current_visuals()
# sr_img = tensor2img([visuals['result']])
# if 'gt' in visuals:
# gt_img = tensor2img([visuals['gt']])
# del self.gt
# # tentative for out of GPU memory
# del self.lq
# del self.output
# torch.cuda.empty_cache()
# if save_img:
# if self.opt['is_train']:
# save_img_path = osp.join(self.opt['path']['visualization'],
# img_name,
# f'{img_name}_{current_iter}.png')
# else:
# if self.opt['val']['suffix']:
# save_img_path = osp.join(
# self.opt['path']['visualization'], dataset_name,
# f'{img_name}_{self.opt["val"]["suffix"]}.png')
# else:
# save_img_path = osp.join(
# self.opt['path']['visualization'], dataset_name,
# f'{img_name}_{self.opt["name"]}.png')
# mmcv.imwrite(sr_img, save_img_path)
# if with_metrics:
# # calculate metrics
# opt_metric = deepcopy(self.opt['val']['metrics'])
# for name, opt_ in opt_metric.items():
# metric_type = opt_.pop('type')
# self.metric_results[name] += getattr(
# metric_module, metric_type)(sr_img, gt_img, **opt_)
# pbar.update(f'Test {img_name}')
# if with_metrics:
# for metric in self.metric_results.keys():
# self.metric_results[metric] /= (idx + 1)
# self._log_validation_metric_values(current_iter, dataset_name,
# tb_logger)
# def _log_validation_metric_values(self, current_iter, dataset_name,
# tb_logger):
# log_str = f'Validation {dataset_name}\n'
# for metric, value in self.metric_results.items():
# log_str += f'\t # {metric}: {value:.4f}\n'
# logger = get_root_logger()
# logger.info(log_str)
# if tb_logger:
# for metric, value in self.metric_results.items():
# tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
# def save(self, epoch, current_iter):
# self.save_network(self.net_g, 'net_g', current_iter)
# self.save_training_state(epoch, current_iter)
ppgan/models/srgan_model.py
浏览文件 @
99d09216
# import logging
from
collections
import
OrderedDict
from
collections
import
OrderedDict
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
# import torch.nn.parallel as P
# from torch.nn.parallel import DataParallel, DistributedDataParallel
# import models.networks as networks
# import models.lr_scheduler as lr_scheduler
from
.generators.builder
import
build_generator
from
.generators.builder
import
build_generator
from
.base_model
import
BaseModel
from
.base_model
import
BaseModel
from
.losses
import
GANLoss
from
.losses
import
GANLoss
from
.builder
import
MODELS
from
.builder
import
MODELS
# logger = logging.getLogger('base')
@
MODELS
.
register
()
@
MODELS
.
register
()
...
@@ -27,7 +22,6 @@ class SRGANModel(BaseModel):
...
@@ -27,7 +22,6 @@ class SRGANModel(BaseModel):
# TODO: support srgan train.
# TODO: support srgan train.
if
False
:
if
False
:
# self.netD = build_discriminator(cfg.model.discriminator)
# self.netD = build_discriminator(cfg.model.discriminator)
self
.
netG
.
train
()
self
.
netG
.
train
()
# self.netD.train()
# self.netD.train()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录