未验证 提交 827d0cfc 编写于 作者: W wangna 提交者: GitHub

add a RS doc (#152)

* add a sr doc

* update README
上级 530a6a8c
......@@ -44,6 +44,7 @@ GAN-Generative Adversarial Network, was praised by "the Father of Convolutional
* [U-GAT-IT](./docs/en_US/tutorials/ugatit.md)
* [Photo2Cartoon](./docs/en_US/tutorials/photo2cartoon.md)
* [Wav2Lip](./docs/en_US/tutorials/wav2lip.md)
* [Super_Resolution](./docs/en_US/tutorials/super_resolution.md)
## Composite Application
......
......@@ -45,6 +45,7 @@ GAN--生成对抗网络,被“卷积网络之父”**Yann LeCun(杨立昆)
* [U-GAT-IT](./docs/zh_CN/tutorials/ugatit.md)
* [Photo2Cartoon](docs/zh_CN/tutorials/photo2cartoon.md)
* [Wav2Lip](docs/zh_CN/tutorials/wav2lip.md)
* [Super_Resolution](./docs/en_US/tutorials/super_resolution.md)
## 复合应用
......
# 1 Super Resolution
## 1.1 Principle
Super resolution is a process of upscaling and improving the details within an image. It usually takes a low-resolution image as input and upscales the same image to a higher resolution as output.
Here we provide three super-resolution models, namely [RealSR](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.pdf), [ESRGAN](https://arxiv.org/abs/1809.00219v2), [LESRCNN](https://arxiv.org/abs/2007.04344).
[RealSR](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.pdf) proposed a realworld super-resolution model aiming at better perception.
[ESRGAN](https://arxiv.org/abs/1809.00219v2) is an enhanced SRGAN that improves the three key components of SRGAN.
[LESRCNN](https://arxiv.org/abs/2007.04344) is a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks.
## 1.2 How to use
### 1.2.1 Prepare Datasets
A list of common image super-resolution datasets is as following:
| Name | Datasets | Short Description | Download |
|---|---|---|---|
| 2K Resolution | [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) | proposed in [NTIRE17](https://data.vision.ee.ethz.ch/cvl/ntire17//) (800 train and 100 validation) | [official website](https://data.vision.ee.ethz.ch/cvl/DIV2K/) |
| Classical SR Testing | Set5 | Set5 test dataset | [Google Drive](https://drive.google.com/drive/folders/1B3DJGQKB6eNdwuQIhdskA64qUuVKLZ9u) / [Baidu Drive](https://pan.baidu.com/s/1q_1ERCMqALH0xFwjLM0pTg#list/path=%2Fsharelink2016187762-785433459861126%2Fclassical_SR_datasets&parentPath=%2Fsharelink2016187762-785433459861126) |
| Classical SR Testing | Set14 | Set14 test dataset | [Google Drive](https://drive.google.com/drive/folders/1B3DJGQKB6eNdwuQIhdskA64qUuVKLZ9u) / [Baidu Drive](https://pan.baidu.com/s/1q_1ERCMqALH0xFwjLM0pTg#list/path=%2Fsharelink2016187762-785433459861126%2Fclassical_SR_datasets&parentPath=%2Fsharelink2016187762-785433459861126) |
The structure of DIV2K is as following:
```
DIV2K
├── DIV2K_train_HR
├── DIV2K_train_LR_bicubic
| ├──X2
| ├──X3
| └──X4
├── DIV2K_valid_HR
├── DIV2K_valid_LR_bicubic
...
```
The structures of Set5 and Set14 are similar. Taking Set5 as an example, the structure is as following:
```
Set5
├── GTmod12
├── LRbicx2
├── LRbicx3
├── LRbicx4
└── original
```
### 1.2.2 Train/Test
Datasets used in example is df2k, you can change it to your own dataset in the config file. The model used in example is RealSR, you can change other models by replacing the config file.
Train a model:
```
python -u tools/main.py --config-file configs/realsr_bicubic_noise_x4_df2k.yaml
```
Test the model:
```
python tools/main.py --config-file configs/realsr_bicubic_noise_x4_df2k.yaml --evaluate-only --load ${PATH_OF_WEIGHT}
```
## 1.3 Results
Evaluated on RGB channels, scale pixels in each border are cropped before evaluation.
The metrics are PSNR / SSIM.
| Method | Set5 | Set14 | DIV2K |
|---|---|---|---|
| realsr_df2k | 28.4385 / 0.8106 | 24.7424 / 0.6678 | 26.7306 / 0.7512 |
| realsr_dped | 20.2421 / 0.6158 | 19.3775 / 0.5259 | 20.5976 / 0.6051 |
| realsr_merge | 24.8315 / 0.7030 | 23.0393 / 0.5986 | 24.8510 / 0.6856 |
| lesrcnn_x4 | 31.9476 / 0.8909 | 28.4110 / 0.7770 | 30.231 / 0.8326 |
| esrgan_psnr_x4 | 32.5512 / 0.8991 | 28.8114 / 0.7871 | 30.7565 / 0.8449 |
| esrgan_x4 | 28.7647 / 0.8187 | 25.0065 / 0.6762 | 26.9013 / 0.7542 |
<!-- ![](../../imgs/horse2zebra.png) -->
## 1.4 模型下载
| 模型 | 数据集 | 下载地址 |
|---|---|---|
| realsr_df2k | df2k | [realsr_df2k](https://paddlegan.bj.bcebos.com/models/realsr_df2k.pdparams)
| realsr_dped | dped | [realsr_dped](https://paddlegan.bj.bcebos.com/models/realsr_dped.pdparams)
| realsr_merge | DIV2K | [realsr_merge](https://paddlegan.bj.bcebos.com/models/realsr_merge.pdparams)
| lesrcnn_x4 | DIV2K | [lesrcnn_x4](https://paddlegan.bj.bcebos.com/models/lesrcnn_x4.pdparams)
| esrgan_psnr_x4 | DIV2K | [esrgan_psnr_x4](https://paddlegan.bj.bcebos.com/models/esrgan_psnr_x4.pdparams)
| esrgan_x4 | DIV2K | [esrgan_x4](https://paddlegan.bj.bcebos.com/models/esrgan_x4.pdparams)
# References
- 1. [Real-World Super-Resolution via Kernel Estimation and Noise Injection](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.pdf)
```
@inproceedings{ji2020real,
title={Real-World Super-Resolution via Kernel Estimation and Noise Injection},
author={Ji, Xiaozhong and Cao, Yun and Tai, Ying and Wang, Chengjie and Li, Jilin and Huang, Feiyue},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
pages={466--467},
year={2020}
}
```
- 2. [ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks](https://arxiv.org/abs/1809.00219v2)
```
@inproceedings{wang2018esrgan,
title={Esrgan: Enhanced super-resolution generative adversarial networks},
author={Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Change Loy, Chen},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={0--0},
year={2018}
}
```
- 3. [Lightweight image super-resolution with enhanced CNN](https://arxiv.org/abs/2007.04344)
```
@article{tian2020lightweight,
title={Lightweight image super-resolution with enhanced CNN},
author={Tian, Chunwei and Zhuge, Ruibin and Wu, Zhihao and Xu, Yong and Zuo, Wangmeng and Chen, Chen and Lin, Chia-Wen},
journal={Knowledge-Based Systems},
volume={205},
pages={106235},
year={2020},
publisher={Elsevier}
}
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册