提交 79570901 编写于 作者: L LielinJiang

add realSR

上级 54896a27
......@@ -17,8 +17,7 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D, Conv2DTranspose
from .correlation_op.correlation import correlation
from paddle.fluid.contrib import correlation
__all__ = ['pwc_dc_net']
......
......@@ -5,14 +5,13 @@ import paddle.nn.functional as F
from resnet_backbone import resnet34, resnet101
from hook import hook_outputs, model_sizes, dummy_eval
# from weight_norm import weight_norm
from spectral_norm import Spectralnorm
from conv import Conv1D
from paddle import fluid
class SequentialEx(nn.Layer):
"Like `nn.Sequential`, but with ModuleList semantics, and can access module input"
def __init__(self, *layers):
super().__init__()
self.layers = nn.LayerList(layers)
......@@ -28,14 +27,32 @@ class SequentialEx(nn.Layer):
res = nres
return res
def __getitem__(self,i): return self.layers[i]
def append(self,l): return self.layers.append(l)
def extend(self,l): return self.layers.extend(l)
def insert(self,i,l): return self.layers.insert(i,l)
def __getitem__(self, i):
return self.layers[i]
def append(self, l):
return self.layers.append(l)
def extend(self, l):
return self.layers.extend(l)
def insert(self, i, l):
return self.layers.insert(i, l)
class Deoldify(SequentialEx):
def __init__(self, encoder, n_classes, blur=False, blur_final=True, self_attention=False, y_range=None, last_cross=True, bottle=False, norm_type='Batch', nf_factor=1, **kwargs):
def __init__(self,
encoder,
n_classes,
blur=False,
blur_final=True,
self_attention=False,
y_range=None,
last_cross=True,
bottle=False,
norm_type='Batch',
nf_factor=1,
**kwargs):
imsize = (256, 256)
sfs_szs = model_sizes(encoder, size=imsize)
......@@ -47,12 +64,14 @@ class Deoldify(SequentialEx):
extra_bn = norm_type == 'Spectral'
ni = sfs_szs[-1][1]
middle_conv = nn.Sequential(
custom_conv_layer(
ni, ni * 2, norm_type=norm_type, extra_bn=extra_bn
),
custom_conv_layer(
ni * 2, ni, norm_type=norm_type, extra_bn=extra_bn
),
custom_conv_layer(ni,
ni * 2,
norm_type=norm_type,
extra_bn=extra_bn),
custom_conv_layer(ni * 2,
ni,
norm_type=norm_type,
extra_bn=extra_bn),
)
layers = [encoder, nn.BatchNorm(ni), nn.ReLU(), middle_conv]
......@@ -65,18 +84,16 @@ class Deoldify(SequentialEx):
n_out = nf if not_final else nf // 2
unet_block = UnetBlockWide(
up_in_c,
x_in_c,
n_out,
self.sfs[i],
final_div=not_final,
blur=blur,
self_attention=sa,
norm_type=norm_type,
extra_bn=extra_bn,
**kwargs
)
unet_block = UnetBlockWide(up_in_c,
x_in_c,
n_out,
self.sfs[i],
final_div=not_final,
blur=blur,
self_attention=sa,
norm_type=norm_type,
extra_bn=extra_bn,
**kwargs)
unet_block.eval()
layers.append(unet_block)
x = unet_block(x)
......@@ -87,32 +104,34 @@ class Deoldify(SequentialEx):
if last_cross:
layers.append(MergeLayer(dense=True))
ni += 3
layers.append(res_block(ni, bottle=bottle, norm_type=norm_type, **kwargs))
layers.append(
res_block(ni, bottle=bottle, norm_type=norm_type, **kwargs))
layers += [
custom_conv_layer(ni, n_classes, ks=1, use_activ=False, norm_type=norm_type)
custom_conv_layer(ni,
n_classes,
ks=1,
use_activ=False,
norm_type=norm_type)
]
if y_range is not None:
layers.append(SigmoidRange(*y_range))
super().__init__(*layers)
def custom_conv_layer(
ni: int,
nf: int,
ks: int = 3,
stride: int = 1,
padding: int = None,
bias: bool = None,
is_1d: bool = False,
norm_type='Batch',
use_activ: bool = True,
leaky: float = None,
transpose: bool = False,
self_attention: bool = False,
extra_bn: bool = False,
**kwargs
):
def custom_conv_layer(ni: int,
nf: int,
ks: int = 3,
stride: int = 1,
padding: int = None,
bias: bool = None,
is_1d: bool = False,
norm_type='Batch',
use_activ: bool = True,
leaky: float = None,
transpose: bool = False,
self_attention: bool = False,
extra_bn: bool = False,
**kwargs):
"Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers."
if padding is None:
padding = (ks - 1) // 2 if not transpose else 0
......@@ -121,7 +140,12 @@ def custom_conv_layer(
bias = not bn
conv_func = nn.ConvTranspose2d if transpose else nn.Conv1d if is_1d else nn.Conv2d
conv = conv_func(ni, nf, kernel_size=ks, bias_attr=bias, stride=stride, padding=padding)
conv = conv_func(ni,
nf,
kernel_size=ks,
bias_attr=bias,
stride=stride,
padding=padding)
if norm_type == 'Weight':
print('use weight norm')
conv = nn.utils.weight_norm(conv)
......@@ -135,11 +159,11 @@ def custom_conv_layer(
layers.append((nn.BatchNorm if is_1d else nn.BatchNorm)(nf))
if self_attention:
layers.append(SelfAttention(nf))
return nn.Sequential(*layers)
def relu(inplace:bool=False, leaky:float=None):
def relu(inplace: bool = False, leaky: float = None):
"Return a relu activation, maybe `leaky` and `inplace`."
return nn.LeakyReLU(leaky) if leaky is not None else nn.ReLU()
......@@ -147,29 +171,31 @@ def relu(inplace:bool=False, leaky:float=None):
class UnetBlockWide(nn.Layer):
"A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."
def __init__(
self,
up_in_c: int,
x_in_c: int,
n_out: int,
hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
**kwargs
):
def __init__(self,
up_in_c: int,
x_in_c: int,
n_out: int,
hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
**kwargs):
super().__init__()
self.hook = hook
up_out = x_out = n_out // 2
self.shuf = CustomPixelShuffle_ICNR(
up_in_c, up_out, blur=blur, leaky=leaky, **kwargs
)
self.shuf = CustomPixelShuffle_ICNR(up_in_c,
up_out,
blur=blur,
leaky=leaky,
**kwargs)
self.bn = nn.BatchNorm(x_in_c)
ni = up_out + x_in_c
self.conv = custom_conv_layer(
ni, x_out, leaky=leaky, self_attention=self_attention, **kwargs
)
self.conv = custom_conv_layer(ni,
x_out,
leaky=leaky,
self_attention=self_attention,
**kwargs)
self.relu = relu(leaky=leaky)
def forward(self, up_in):
......@@ -186,29 +212,32 @@ class UnetBlockDeep(paddle.fluid.Layer):
"A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."
def __init__(
self,
up_in_c: int,
x_in_c: int,
# hook: Hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
nf_factor: float = 1.0,
**kwargs
):
self,
up_in_c: int,
x_in_c: int,
# hook: Hook,
final_div: bool = True,
blur: bool = False,
leaky: float = None,
self_attention: bool = False,
nf_factor: float = 1.0,
**kwargs):
super().__init__()
self.shuf = CustomPixelShuffle_ICNR(
up_in_c, up_in_c // 2, blur=blur, leaky=leaky, **kwargs
)
self.shuf = CustomPixelShuffle_ICNR(up_in_c,
up_in_c // 2,
blur=blur,
leaky=leaky,
**kwargs)
self.bn = nn.BatchNorm(x_in_c)
ni = up_in_c // 2 + x_in_c
nf = int((ni if final_div else ni // 2) * nf_factor)
self.conv1 = custom_conv_layer(ni, nf, leaky=leaky, **kwargs)
self.conv2 = custom_conv_layer(
nf, nf, leaky=leaky, self_attention=self_attention, **kwargs
)
self.conv2 = custom_conv_layer(nf,
nf,
leaky=leaky,
self_attention=self_attention,
**kwargs)
self.relu = relu(leaky=leaky)
def forward(self, up_in):
......@@ -228,34 +257,61 @@ def ifnone(a, b):
class PixelShuffle_ICNR(nn.Layer):
"Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`."
def __init__(self, ni:int, nf:int=None, scale:int=2, blur:bool=False, norm_type='Weight', leaky:float=None):
def __init__(self,
ni: int,
nf: int = None,
scale: int = 2,
blur: bool = False,
norm_type='Weight',
leaky: float = None):
super().__init__()
nf = ifnone(nf, ni)
self.conv = conv_layer(ni, nf*(scale**2), ks=1, norm_type=norm_type, use_activ=False)
self.conv = conv_layer(ni,
nf * (scale**2),
ks=1,
norm_type=norm_type,
use_activ=False)
self.shuf = PixelShuffle(scale)
self.pad = ReplicationPad2d((1,0,1,0))
self.pad = ReplicationPad2d((1, 0, 1, 0))
self.blur = nn.Pool2D(2, pool_stride=1, pool_type='avg')
self.relu = relu(True, leaky=leaky)
def forward(self,x):
def forward(self, x):
x = self.shuf(self.relu(self.conv(x)))
return self.blur(self.pad(x)) if self.blur else x
def conv_layer(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias:bool=None, is_1d:bool=False,
norm_type='Batch', use_activ:bool=True, leaky:float=None,
transpose:bool=False, init=None, self_attention:bool=False):
def conv_layer(ni: int,
nf: int,
ks: int = 3,
stride: int = 1,
padding: int = None,
bias: bool = None,
is_1d: bool = False,
norm_type='Batch',
use_activ: bool = True,
leaky: float = None,
transpose: bool = False,
init=None,
self_attention: bool = False):
"Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers."
if padding is None: padding = (ks-1)//2 if not transpose else 0
if padding is None: padding = (ks - 1) // 2 if not transpose else 0
bn = norm_type in ('Batch', 'BatchZero')
if bias is None: bias = not bn
conv_func = nn.ConvTranspose2d if transpose else nn.Conv1d if is_1d else nn.Conv2d
conv = conv_func(ni, nf, kernel_size=ks, bias_attr=bias, stride=stride, padding=padding)
if norm_type=='Weight':
conv = conv_func(ni,
nf,
kernel_size=ks,
bias_attr=bias,
stride=stride,
padding=padding)
if norm_type == 'Weight':
conv = nn.utils.weight_norm(conv)
elif norm_type=='Spectral':
elif norm_type == 'Spectral':
conv = Spectralnorm(conv)
layers = [conv]
......@@ -268,26 +324,27 @@ def conv_layer(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias:bo
class CustomPixelShuffle_ICNR(paddle.fluid.Layer):
"Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`, `icnr` init, and `weight_norm`."
def __init__(
self,
ni: int,
nf: int = None,
scale: int = 2,
blur: bool = False,
leaky: float = None,
**kwargs
):
def __init__(self,
ni: int,
nf: int = None,
scale: int = 2,
blur: bool = False,
leaky: float = None,
**kwargs):
super().__init__()
nf = ifnone(nf, ni)
self.conv = custom_conv_layer(
ni, nf * (scale ** 2), ks=1, use_activ=False, **kwargs
)
self.conv = custom_conv_layer(ni,
nf * (scale**2),
ks=1,
use_activ=False,
**kwargs)
self.shuf = PixelShuffle(scale)
self.pad = ReplicationPad2d((1, 0, 1, 0))
self.blur = nn.Pool2D(2, pool_stride=1, pool_type='avg')
self.relu = nn.LeakyReLU(leaky) if leaky is not None else nn.ReLU()#relu(True, leaky=leaky)
self.relu = nn.LeakyReLU(
leaky) if leaky is not None else nn.ReLU() #relu(True, leaky=leaky)
def forward(self, x):
x = self.shuf(self.relu(self.conv(x)))
......@@ -296,34 +353,43 @@ class CustomPixelShuffle_ICNR(paddle.fluid.Layer):
class MergeLayer(paddle.fluid.Layer):
"Merge a shortcut with the result of the module by adding them or concatenating thme if `dense=True`."
def __init__(self, dense:bool=False):
def __init__(self, dense: bool = False):
super().__init__()
self.dense=dense
self.dense = dense
self.orig = None
def forward(self, x):
out = paddle.concat([x,self.orig], axis=1) if self.dense else (x+self.orig)
def forward(self, x):
out = paddle.concat([x, self.orig],
axis=1) if self.dense else (x + self.orig)
self.orig = None
return out
def res_block(nf, dense:bool=False, norm_type='Batch', bottle:bool=False, **conv_kwargs):
def res_block(nf,
dense: bool = False,
norm_type='Batch',
bottle: bool = False,
**conv_kwargs):
"Resnet block of `nf` features. `conv_kwargs` are passed to `conv_layer`."
norm2 = norm_type
if not dense and (norm_type=='Batch'): norm2 = 'BatchZero'
nf_inner = nf//2 if bottle else nf
return SequentialEx(conv_layer(nf, nf_inner, norm_type=norm_type, **conv_kwargs),
conv_layer(nf_inner, nf, norm_type=norm2, **conv_kwargs),
MergeLayer(dense))
if not dense and (norm_type == 'Batch'): norm2 = 'BatchZero'
nf_inner = nf // 2 if bottle else nf
return SequentialEx(
conv_layer(nf, nf_inner, norm_type=norm_type, **conv_kwargs),
conv_layer(nf_inner, nf, norm_type=norm2, **conv_kwargs),
MergeLayer(dense))
class SigmoidRange(paddle.fluid.Layer):
"Sigmoid module with range `(low,x_max)`"
def __init__(self, low, high):
super().__init__()
self.low,self.high = low,high
self.low, self.high = low, high
def forward(self, x): return sigmoid_range(x, self.low, self.high)
def forward(self, x):
return sigmoid_range(x, self.low, self.high)
def sigmoid_range(x, low, high):
......@@ -331,7 +397,6 @@ def sigmoid_range(x, low, high):
return F.sigmoid(x) * (high - low) + low
class PixelShuffle(paddle.fluid.Layer):
def __init__(self, upscale_factor):
super(PixelShuffle, self).__init__()
......@@ -349,7 +414,13 @@ class ReplicationPad2d(nn.Layer):
def forward(self, x):
return paddle.fluid.layers.pad2d(x, self.size, mode="edge")
def conv1d(ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=False):
def conv1d(ni: int,
no: int,
ks: int = 1,
stride: int = 1,
padding: int = 0,
bias: bool = False):
"Create and initialize a `nn.Conv1d` layer with spectral normalization."
conv = nn.Conv1d(ni, no, ks, stride=stride, padding=padding, bias_attr=bias)
return Spectralnorm(conv)
......@@ -357,30 +428,35 @@ def conv1d(ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=Fals
class SelfAttention(nn.Layer):
"Self attention layer for nd."
def __init__(self, n_channels):
super().__init__()
self.query = conv1d(n_channels, n_channels//8)
self.key = conv1d(n_channels, n_channels//8)
self.query = conv1d(n_channels, n_channels // 8)
self.key = conv1d(n_channels, n_channels // 8)
self.value = conv1d(n_channels, n_channels)
self.gamma = self.create_parameter(shape=[1],
default_initializer=paddle.fluid.initializer.Constant(0.0))#nn.Parameter(tensor([0.]))
self.gamma = self.create_parameter(
shape=[1],
default_initializer=paddle.fluid.initializer.Constant(
0.0)) #nn.Parameter(tensor([0.]))
def forward(self, x):
#Notation from https://arxiv.org/pdf/1805.08318.pdf
size = x.shape
x = paddle.reshape(x, list(size[:2]) + [-1])
f,g,h = self.query(x),self.key(x),self.value(x)
beta = paddle.nn.functional.softmax(paddle.bmm(paddle.transpose(f, [0, 2, 1]), g), axis=1)
x = paddle.reshape(x, list(size[:2]) + [-1])
f, g, h = self.query(x), self.key(x), self.value(x)
beta = paddle.nn.functional.softmax(paddle.bmm(
paddle.transpose(f, [0, 2, 1]), g),
axis=1)
o = self.gamma * paddle.bmm(h, beta) + x
return paddle.reshape(o, size)
def _get_sfs_idxs(sizes):
"Get the indexes of the layers where the size of the activation changes."
feature_szs = [size[-1] for size in sizes]
sfs_idxs = list(
np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0]
)
np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0])
if feature_szs[0] != feature_szs[1]:
sfs_idxs = [0] + sfs_idxs
return sfs_idxs
......@@ -391,5 +467,11 @@ def build_model():
cut = -2
encoder = nn.Sequential(*list(backbone.children())[:cut])
model = Deoldify(encoder, 3, blur=True, y_range=(-3, 3), norm_type='Spectral', self_attention=True, nf_factor=2)
model = Deoldify(encoder,
3,
blur=True,
y_range=(-3, 3),
norm_type='Spectral',
self_attention=True,
nf_factor=2)
return model
......@@ -22,7 +22,7 @@ parser.add_argument('--input', type=str, default='none', help='Input video')
parser.add_argument('--output', type=str, default='output', help='output dir')
parser.add_argument('--weight_path',
type=str,
default='none',
default=None,
help='Path to the reference image directory')
DeOldify_weight_url = 'https://paddlegan.bj.bcebos.com/applications/DeOldify_stable.pdparams'
......
import os
import sys
cur_path = os.path.abspath(os.path.dirname(__file__))
sys.path.append(cur_path)
import cv2
import glob
import argparse
import numpy as np
import paddle
import pickle
from PIL import Image
from tqdm import tqdm
from sr_model import RRDBNet
from paddle.utils.download import get_path_from_url
parser = argparse.ArgumentParser(description='RealSR')
parser.add_argument('--input', type=str, default='none', help='Input video')
parser.add_argument('--output', type=str, default='output', help='output dir')
parser.add_argument('--weight_path',
type=str,
default=None,
help='Path to the reference image directory')
RealSR_weight_url = 'https://paddlegan.bj.bcebos.com/applications/DF2K_JPEG.pdparams'
def frames_to_video_ffmpeg(framepath, videopath, r):
ffmpeg = ['ffmpeg ', ' -loglevel ', ' error ']
cmd = ffmpeg + [
' -r ', r, ' -f ', ' image2 ', ' -i ', framepath, ' -vcodec ',
' libx264 ', ' -pix_fmt ', ' yuv420p ', ' -crf ', ' 16 ', videopath
]
cmd = ''.join(cmd)
print(cmd)
if os.system(cmd) == 0:
print('Video: {} done'.format(videopath))
else:
print('Video: {} error'.format(videopath))
print('')
sys.stdout.flush()
class RealSRPredictor():
def __init__(self, input, output, batch_size=1, weight_path=None):
self.input = input
self.output = os.path.join(output, 'RealSR')
self.model = RRDBNet(3, 3, 64, 23)
if weight_path is None:
weight_path = get_path_from_url(RealSR_weight_url, cur_path)
state_dict, _ = paddle.load(weight_path)
self.model.load_dict(state_dict)
self.model.eval()
def norm(self, img):
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0
return img.astype('float32')
def denorm(self, img):
img = img.transpose((1, 2, 0))
return (img * 255).clip(0, 255).astype('uint8')
def run_single(self, img_path):
ori_img = Image.open(img_path).convert('RGB')
img = self.norm(ori_img)
x = paddle.to_tensor(img[np.newaxis, ...])
out = self.model(x)
pred_img = self.denorm(out.numpy()[0])
pred_img = Image.fromarray(pred_img)
return pred_img
def run(self):
vid = self.input
base_name = os.path.basename(vid).split('.')[0]
output_path = os.path.join(self.output, base_name)
pred_frame_path = os.path.join(output_path, 'frames_pred')
if not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(pred_frame_path):
os.makedirs(pred_frame_path)
cap = cv2.VideoCapture(vid)
fps = cap.get(cv2.CAP_PROP_FPS)
out_path = dump_frames_ffmpeg(vid, output_path)
frames = sorted(glob.glob(os.path.join(out_path, '*.png')))
for frame in tqdm(frames):
pred_img = self.run_single(frame)
frame_name = os.path.basename(frame)
pred_img.save(os.path.join(pred_frame_path, frame_name))
frame_pattern_combined = os.path.join(pred_frame_path, '%08d.png')
vid_out_path = os.path.join(output_path,
'{}_realsr_out.mp4'.format(base_name))
frames_to_video_ffmpeg(frame_pattern_combined, vid_out_path,
str(int(fps)))
return frame_pattern_combined, vid_out_path
def dump_frames_ffmpeg(vid_path, outpath, r=None, ss=None, t=None):
ffmpeg = ['ffmpeg ', ' -loglevel ', ' error ']
vid_name = vid_path.split('/')[-1].split('.')[0]
out_full_path = os.path.join(outpath, 'frames_input')
if not os.path.exists(out_full_path):
os.makedirs(out_full_path)
# video file name
outformat = out_full_path + '/%08d.png'
if ss is not None and t is not None and r is not None:
cmd = ffmpeg + [
' -ss ', ss, ' -t ', t, ' -i ', vid_path, ' -r ', r, ' -qscale:v ',
' 0.1 ', ' -start_number ', ' 0 ', outformat
]
else:
cmd = ffmpeg + [' -i ', vid_path, ' -start_number ', ' 0 ', outformat]
cmd = ''.join(cmd)
print(cmd)
if os.system(cmd) == 0:
print('Video: {} done'.format(vid_name))
else:
print('Video: {} error'.format(vid_name))
print('')
sys.stdout.flush()
return out_full_path
if __name__ == '__main__':
paddle.disable_static()
args = parser.parse_args()
predictor = RealSRPredictor(args.input,
args.output,
weight_path=args.weight_path)
frames_path, temp_video_path = predictor.run()
print('output video path:', temp_video_path)
import functools
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class ResidualDenseBlock_5C(nn.Layer):
def __init__(self, nf=64, gc=32, bias=True):
super(ResidualDenseBlock_5C, self).__init__()
# gc: growth channel, i.e. intermediate channels
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias_attr=bias)
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias_attr=bias)
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias_attr=bias)
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias_attr=bias)
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias_attr=bias)
self.lrelu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(paddle.concat((x, x1), 1)))
x3 = self.lrelu(self.conv3(paddle.concat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(paddle.concat((x, x1, x2, x3), 1)))
x5 = self.conv5(paddle.concat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Layer):
'''Residual in Residual Dense Block'''
def __init__(self, nf, gc=32):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class RRDBNet(nn.Layer):
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
super(RRDBNet, self).__init__()
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias_attr=True)
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias_attr=True)
#### upsampling
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias_attr=True)
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias_attr=True)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias_attr=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias_attr=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x):
fea = self.conv_first(x)
trunk = self.trunk_conv(self.RRDB_trunk(fea))
fea = fea + trunk
fea = self.lrelu(
self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
fea = self.lrelu(
self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
out = self.conv_last(self.lrelu(self.HRconv(fea)))
return out
cd DAIN/pwcnet/correlation_op
# 第一次需要执行
# bash make.shap
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:`python -c 'import paddle; print(paddle.sysconfig.get_lib())'`
export PYTHONPATH=$PYTHONPATH:`pwd`
cd -
# 模型说明
# 目前包含DAIN(插帧模型),DeOldify(上色模型),DeepRemaster(去噪与上色模型),EDVR(基于连续帧(视频)超分辨率模型),RealSR(基于图片的超分辨率模型)
# 参数说明
# input 输入视频的路径
# output 输出视频保存的路径
# proccess_order 使用模型的顺序
# proccess_order 要使用的模型及顺序
python tools/main.py \
--input input.mp4 --output output --proccess_order DAIN DeepRemaster DeOldify EDVR
python tools/video-enhance.py \
--input input.mp4 --output output --proccess_order DeOldify RealSR
......@@ -7,28 +7,60 @@ import paddle
from DAIN.predict import VideoFrameInterp
from DeepRemaster.predict import DeepReasterPredictor
from DeOldify.predict import DeOldifyPredictor
from RealSR.predict import RealSRPredictor
from EDVR.predict import EDVRPredictor
parser = argparse.ArgumentParser(description='Fix video')
parser.add_argument('--input', type=str, default=None, help='Input video')
parser.add_argument('--output', type=str, default='output', help='output dir')
parser.add_argument('--DAIN_weight', type=str, default=None, help='Path to model weight')
parser.add_argument('--DeepRemaster_weight', type=str, default=None, help='Path to model weight')
parser.add_argument('--DeOldify_weight', type=str, default=None, help='Path to model weight')
parser.add_argument('--EDVR_weight', type=str, default=None, help='Path to model weight')
parser.add_argument('--input', type=str, default=None, help='Input video')
parser.add_argument('--output', type=str, default='output', help='output dir')
parser.add_argument('--DAIN_weight',
type=str,
default=None,
help='Path to model weight')
parser.add_argument('--DeepRemaster_weight',
type=str,
default=None,
help='Path to model weight')
parser.add_argument('--DeOldify_weight',
type=str,
default=None,
help='Path to model weight')
parser.add_argument('--RealSR_weight',
type=str,
default=None,
help='Path to model weight')
parser.add_argument('--EDVR_weight',
type=str,
default=None,
help='Path to model weight')
# DAIN args
parser.add_argument('--time_step', type=float, default=0.5, help='choose the time steps')
parser.add_argument('--time_step',
type=float,
default=0.5,
help='choose the time steps')
# DeepRemaster args
parser.add_argument('--reference_dir', type=str, default=None, help='Path to the reference image directory')
parser.add_argument('--colorization', action='store_true', default=False, help='Remaster with colorization')
parser.add_argument('--mindim', type=int, default=360, help='Length of minimum image edges')
#process order support model name:[DAIN, DeepRemaster, DeOldify, EDVR]
parser.add_argument('--proccess_order', type=str, default='none', nargs='+', help='Process order')
parser.add_argument('--reference_dir',
type=str,
default=None,
help='Path to the reference image directory')
parser.add_argument('--colorization',
action='store_true',
default=False,
help='Remaster with colorization')
parser.add_argument('--mindim',
type=int,
default=360,
help='Length of minimum image edges')
#process order support model name:[DAIN, DeepRemaster, DeOldify, RealSR, EDVR]
parser.add_argument('--proccess_order',
type=str,
default='none',
nargs='+',
help='Process order')
if __name__ == "__main__":
args = parser.parse_args()
orders = args.proccess_order
temp_video_path = None
......@@ -36,24 +68,41 @@ if __name__ == "__main__":
if temp_video_path is None:
temp_video_path = args.input
if order == 'DAIN':
predictor = VideoFrameInterp(args.time_step, args.DAIN_weight,
temp_video_path, output_path=args.output)
predictor = VideoFrameInterp(args.time_step,
args.DAIN_weight,
temp_video_path,
output_path=args.output)
frames_path, temp_video_path = predictor.run()
elif order == 'DeepRemaster':
paddle.disable_static()
predictor = DeepReasterPredictor(temp_video_path, args.output, weight_path=args.DeepRemaster_weight,
colorization=args.colorization, reference_dir=args.reference_dir, mindim=args.mindim)
predictor = DeepReasterPredictor(
temp_video_path,
args.output,
weight_path=args.DeepRemaster_weight,
colorization=args.colorization,
reference_dir=args.reference_dir,
mindim=args.mindim)
frames_path, temp_video_path = predictor.run()
paddle.enable_static()
elif order == 'DeOldify':
elif order == 'DeOldify':
paddle.disable_static()
predictor = DeOldifyPredictor(temp_video_path, args.output, weight_path=args.DeOldify_weight)
predictor = DeOldifyPredictor(temp_video_path,
args.output,
weight_path=args.DeOldify_weight)
frames_path, temp_video_path = predictor.run()
paddle.enable_static()
elif order == 'RealSR':
paddle.disable_static()
predictor = RealSRPredictor(temp_video_path,
args.output,
weight_path=args.RealSR_weight)
frames_path, temp_video_path = predictor.run()
paddle.enable_static()
elif order == 'EDVR':
predictor = EDVRPredictor(temp_video_path, args.output, weight_path=args.EDVR_weight)
predictor = EDVRPredictor(temp_video_path,
args.output,
weight_path=args.EDVR_weight)
frames_path, temp_video_path = predictor.run()
print('Model {} output frames path:'.format(order), frames_path)
print('Model {} output video path:'.format(order), temp_video_path)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部