Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
38b08d08
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
大约 1 年 前同步成功
通知
97
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
38b08d08
编写于
10月 20, 2020
作者:
L
LielinJiang
提交者:
GitHub
10月 20, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #40 from littletomatodonkey/master
fix some apis to paddle-dev
上级
6c75d650
a2c16c31
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
62 addition
and
61 deletion
+62
-61
ppgan/datasets/builder.py
ppgan/datasets/builder.py
+12
-10
ppgan/models/generators/resnet.py
ppgan/models/generators/resnet.py
+37
-39
ppgan/models/losses.py
ppgan/models/losses.py
+1
-0
ppgan/modules/init.py
ppgan/modules/init.py
+3
-4
ppgan/modules/norm.py
ppgan/modules/norm.py
+9
-8
未找到文件。
ppgan/datasets/builder.py
浏览文件 @
38b08d08
...
...
@@ -59,15 +59,17 @@ class DictDataLoader():
place
=
paddle
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
if
ParallelEnv
().
nranks
>
1
else
paddle
.
CUDAPlace
(
0
)
sampler
=
DistributedBatchSampler
(
self
.
dataset
,
batch_size
=
batch_size
,
shuffle
=
True
if
is_train
else
False
,
drop_last
=
True
if
is_train
else
False
)
self
.
dataloader
=
paddle
.
io
.
DataLoader
(
self
.
dataset
,
batch_sampler
=
sampler
,
places
=
place
,
num_workers
=
num_workers
)
sampler
=
DistributedBatchSampler
(
self
.
dataset
,
batch_size
=
batch_size
,
shuffle
=
True
if
is_train
else
False
,
drop_last
=
True
if
is_train
else
False
)
self
.
dataloader
=
paddle
.
io
.
DataLoader
(
self
.
dataset
,
batch_sampler
=
sampler
,
places
=
place
,
num_workers
=
num_workers
)
self
.
batch_size
=
batch_size
...
...
@@ -92,7 +94,7 @@ class DictDataLoader():
return
len
(
self
.
dataloader
)
def
get_items_by_indexs
(
self
,
key
,
indexs
):
if
isinstance
(
indexs
,
paddle
.
Variable
):
if
isinstance
(
indexs
,
paddle
.
Tensor
):
indexs
=
indexs
.
numpy
()
current_items
=
[]
items
=
getattr
(
self
.
dataset
,
key
)
...
...
ppgan/models/generators/resnet.py
浏览文件 @
38b08d08
...
...
@@ -13,6 +13,7 @@ class ResnetGenerator(nn.Layer):
code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
"""
def
__init__
(
self
,
input_nc
,
output_nc
,
...
...
@@ -37,17 +38,14 @@ class ResnetGenerator(nn.Layer):
norm_layer
=
build_norm_layer
(
norm_type
)
if
type
(
norm_layer
)
==
functools
.
partial
:
use_bias
=
norm_layer
.
func
==
nn
.
InstanceNorm
use_bias
=
norm_layer
.
func
==
nn
.
InstanceNorm
2d
else
:
use_bias
=
norm_layer
==
nn
.
InstanceNorm
use_bias
=
norm_layer
==
nn
.
InstanceNorm
2d
model
=
[
nn
.
ReflectionPad2d
([
3
,
3
,
3
,
3
]),
nn
.
Conv2d
(
input_nc
,
ngf
,
kernel_size
=
7
,
padding
=
0
,
bias_attr
=
use_bias
),
nn
.
Pad2D
(
padding
=
[
3
,
3
,
3
,
3
],
mode
=
"reflect"
),
nn
.
Conv2d
(
input_nc
,
ngf
,
kernel_size
=
7
,
padding
=
0
,
bias_attr
=
use_bias
),
norm_layer
(
ngf
),
nn
.
ReLU
()
]
...
...
@@ -56,12 +54,13 @@ class ResnetGenerator(nn.Layer):
for
i
in
range
(
n_downsampling
):
# add downsampling layers
mult
=
2
**
i
model
+=
[
nn
.
Conv2d
(
ngf
*
mult
,
ngf
*
mult
*
2
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
bias_attr
=
use_bias
),
nn
.
Conv2d
(
ngf
*
mult
,
ngf
*
mult
*
2
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
bias_attr
=
use_bias
),
norm_layer
(
ngf
*
mult
*
2
),
nn
.
ReLU
()
]
...
...
@@ -70,27 +69,29 @@ class ResnetGenerator(nn.Layer):
for
i
in
range
(
n_blocks
):
# add ResNet blocks
model
+=
[
ResnetBlock
(
ngf
*
mult
,
padding_type
=
padding_type
,
norm_layer
=
norm_layer
,
use_dropout
=
use_dropout
,
use_bias
=
use_bias
)
ResnetBlock
(
ngf
*
mult
,
padding_type
=
padding_type
,
norm_layer
=
norm_layer
,
use_dropout
=
use_dropout
,
use_bias
=
use_bias
)
]
for
i
in
range
(
n_downsampling
):
# add upsampling layers
mult
=
2
**
(
n_downsampling
-
i
)
model
+=
[
nn
.
ConvTranspose2d
(
ngf
*
mult
,
int
(
ngf
*
mult
/
2
),
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
,
bias_attr
=
use_bias
),
nn
.
ConvTranspose2d
(
ngf
*
mult
,
int
(
ngf
*
mult
/
2
),
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
output_padding
=
1
,
bias_attr
=
use_bias
),
norm_layer
(
int
(
ngf
*
mult
/
2
)),
nn
.
ReLU
()
]
model
+=
[
nn
.
ReflectionPad2d
([
3
,
3
,
3
,
3
]
)]
model
+=
[
nn
.
Pad2D
(
padding
=
[
3
,
3
,
3
,
3
],
mode
=
"reflect"
)]
model
+=
[
nn
.
Conv2d
(
ngf
,
output_nc
,
kernel_size
=
7
,
padding
=
0
)]
model
+=
[
nn
.
Tanh
()]
...
...
@@ -103,6 +104,7 @@ class ResnetGenerator(nn.Layer):
class
ResnetBlock
(
nn
.
Layer
):
"""Define a Resnet block"""
def
__init__
(
self
,
dim
,
padding_type
,
norm_layer
,
use_dropout
,
use_bias
):
"""Initialize the Resnet block
...
...
@@ -130,15 +132,13 @@ class ResnetBlock(nn.Layer):
"""
conv_block
=
[]
p
=
0
if
padding_type
==
'reflect'
:
conv_block
+=
[
nn
.
ReflectionPad2d
([
1
,
1
,
1
,
1
])]
elif
padding_type
==
'replicate'
:
conv_block
+=
[
nn
.
ReplicationPad2d
([
1
,
1
,
1
,
1
])]
if
padding_type
in
[
'reflect'
,
'replicate'
]:
conv_block
+=
[
nn
.
Pad2D
(
padding
=
[
1
,
1
,
1
,
1
],
mode
=
padding_type
)]
elif
padding_type
==
'zero'
:
p
=
1
else
:
raise
NotImplementedError
(
'padding [%s] is not implemented'
%
padding_type
)
raise
NotImplementedError
(
'padding [%s] is not implemented'
%
padding_type
)
conv_block
+=
[
nn
.
Conv2d
(
dim
,
dim
,
kernel_size
=
3
,
padding
=
p
,
bias_attr
=
use_bias
),
...
...
@@ -149,15 +149,13 @@ class ResnetBlock(nn.Layer):
conv_block
+=
[
nn
.
Dropout
(
0.5
)]
p
=
0
if
padding_type
==
'reflect'
:
conv_block
+=
[
nn
.
ReflectionPad2d
([
1
,
1
,
1
,
1
])]
elif
padding_type
==
'replicate'
:
conv_block
+=
[
nn
.
ReplicationPad2d
([
1
,
1
,
1
,
1
])]
if
padding_type
in
[
'reflect'
,
'replicate'
]:
conv_block
+=
[
nn
.
Pad2D
(
padding
=
[
1
,
1
,
1
,
1
],
mode
=
padding_type
)]
elif
padding_type
==
'zero'
:
p
=
1
else
:
raise
NotImplementedError
(
'padding [%s] is not implemented'
%
padding_type
)
raise
NotImplementedError
(
'padding [%s] is not implemented'
%
padding_type
)
conv_block
+=
[
nn
.
Conv2d
(
dim
,
dim
,
kernel_size
=
3
,
padding
=
p
,
bias_attr
=
use_bias
),
norm_layer
(
dim
)
...
...
ppgan/models/losses.py
浏览文件 @
38b08d08
...
...
@@ -10,6 +10,7 @@ class GANLoss(nn.Layer):
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def
__init__
(
self
,
gan_mode
,
target_real_label
=
1.0
,
target_fake_label
=
0.0
):
""" Initialize the GANLoss class.
...
...
ppgan/modules/init.py
浏览文件 @
38b08d08
...
...
@@ -256,10 +256,8 @@ def kaiming_init(layer,
distribution
=
'normal'
):
assert
distribution
in
[
'uniform'
,
'normal'
]
if
distribution
==
'uniform'
:
kaiming_uniform_
(
layer
.
weight
,
a
=
a
,
mode
=
mode
,
nonlinearity
=
nonlinearity
)
kaiming_uniform_
(
layer
.
weight
,
a
=
a
,
mode
=
mode
,
nonlinearity
=
nonlinearity
)
else
:
kaiming_normal_
(
layer
.
weight
,
a
=
a
,
mode
=
mode
,
nonlinearity
=
nonlinearity
)
if
hasattr
(
layer
,
'bias'
)
and
layer
.
bias
is
not
None
:
...
...
@@ -275,6 +273,7 @@ def init_weights(net, init_type='normal', init_gain=0.02):
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def
init_func
(
m
):
# define the initialization function
classname
=
m
.
__class__
.
__name__
if
hasattr
(
m
,
'weight'
)
and
(
classname
.
find
(
'Conv'
)
!=
-
1
...
...
ppgan/modules/norm.py
浏览文件 @
38b08d08
...
...
@@ -21,21 +21,22 @@ def build_norm_layer(norm_type='instance'):
if
norm_type
==
'batch'
:
norm_layer
=
functools
.
partial
(
nn
.
BatchNorm
,
param
_attr
=
paddle
.
ParamAttr
(
weight
_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
1.0
,
0.02
)),
bias_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Constant
(
0.0
)),
trainable_statistics
=
True
)
elif
norm_type
==
'instance'
:
norm_layer
=
functools
.
partial
(
nn
.
InstanceNorm
,
param
_attr
=
paddle
.
ParamAttr
(
nn
.
InstanceNorm
2d
,
weight
_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Constant
(
1.0
),
learning_rate
=
0.0
,
trainable
=
False
),
bias_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Constant
(
0.0
),
learning_rate
=
0.0
,
trainable
=
False
))
bias_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Constant
(
0.0
),
learning_rate
=
0.0
,
trainable
=
False
))
elif
norm_type
==
'spectral'
:
norm_layer
=
functools
.
partial
(
Spectralnorm
)
elif
norm_type
==
'none'
:
...
...
@@ -43,6 +44,6 @@ def build_norm_layer(norm_type='instance'):
def
norm_layer
(
x
):
return
Identity
()
else
:
raise
NotImplementedError
(
'normalization layer [%s] is not found'
%
norm_type
)
raise
NotImplementedError
(
'normalization layer [%s] is not found'
%
norm_type
)
return
norm_layer
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录