styleganv2fitting_predictor.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import numpy as np
import paddle
from paddle import optimizer as optim
from paddle.nn import functional as F
from paddle.vision import transforms
from tqdm import tqdm
from PIL import Image
from .styleganv2_predictor import StyleGANv2Predictor
from .pixel2style2pixel_predictor import run_alignment
from ..metrics.lpips import LPIPS


def get_lr(t, ts, initial_lr, final_lr):
    alpha = pow(final_lr / initial_lr, 1 / ts)**(t * ts)

    return initial_lr * alpha


def make_image(tensor):
    return (((tensor.detach() + 1) / 2 * 255).clip(min=0, max=255).transpose(
        (0, 2, 3, 1)).numpy().astype('uint8'))


class StyleGANv2FittingPredictor(StyleGANv2Predictor):
    def run(
            self,
            image,
            need_align=False,
            start_lr=0.1,
            final_lr=0.025,
            latent_level=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                          11],  # for ffhq (0~17)
            step=100,
            mse_weight=1,
            pre_latent=None):

        if need_align:
            src_img = run_alignment(image)
        else:
            src_img = Image.open(image).convert("RGB")

        generator = self.generator
        generator.train()

        percept = LPIPS(net='vgg')
        # on PaddlePaddle, lpips's default eval mode means no gradients.
        percept.train()

        n_mean_latent = 4096

        transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(256),
            transforms.Transpose(),
            transforms.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5]),
        ])

        imgs = paddle.to_tensor(transform(src_img)).unsqueeze(0)

        if pre_latent is None:
            with paddle.no_grad():
                noise_sample = paddle.randn(
                    (n_mean_latent, generator.style_dim))
                latent_out = generator.style(noise_sample)

                latent_mean = latent_out.mean(0)

            latent_in = latent_mean.detach().clone().unsqueeze(0).tile(
                (imgs.shape[0], 1))
            latent_in = latent_in.unsqueeze(1).tile(
                (1, generator.n_latent, 1)).detach()

        else:
            latent_in = paddle.to_tensor(np.load(pre_latent)).unsqueeze(0)

        var_levels = list(latent_level)
        const_levels = [
            i for i in range(generator.n_latent) if i not in var_levels
        ]
        assert len(var_levels) > 0
        if len(const_levels) > 0:
            latent_fix = latent_in.index_select(paddle.to_tensor(const_levels),
                                                1).detach().clone()
            latent_in = latent_in.index_select(paddle.to_tensor(var_levels),
                                               1).detach().clone()

        latent_in.stop_gradient = False

        optimizer = optim.Adam(parameters=[latent_in], learning_rate=start_lr)

        pbar = tqdm(range(step))

        for i in pbar:
            t = i / step
            lr = get_lr(t, step, start_lr, final_lr)
            optimizer.set_lr(lr)

            if len(const_levels) > 0:
                latent_dict = {}
                for idx, idx2 in enumerate(var_levels):
                    latent_dict[idx2] = latent_in[:, idx:idx + 1]
                for idx, idx2 in enumerate(const_levels):
                    latent_dict[idx2] = (latent_fix[:, idx:idx + 1]).detach()
                latent_list = []
                for idx in range(generator.n_latent):
                    latent_list.append(latent_dict[idx])
                latent_n = paddle.concat(latent_list, 1)
            else:
                latent_n = latent_in

            img_gen, _ = generator([latent_n],
                                   input_is_latent=True,
                                   randomize_noise=False)

            batch, channel, height, width = img_gen.shape

            if height > 256:
                factor = height // 256

                img_gen = img_gen.reshape((batch, channel, height // factor,
                                           factor, width // factor, factor))
                img_gen = img_gen.mean([3, 5])

            p_loss = percept(img_gen, imgs).sum()
            mse_loss = F.mse_loss(img_gen, imgs)
            loss = p_loss + mse_weight * mse_loss

            optimizer.clear_grad()
            loss.backward()
            optimizer.step()

            pbar.set_description(
                (f"perceptual: {p_loss.numpy()[0]:.4f}; "
                 f"mse: {mse_loss.numpy()[0]:.4f}; lr: {lr:.4f}"))

        img_gen, _ = generator([latent_n],
                               input_is_latent=True,
                               randomize_noise=False)
        dst_img = make_image(img_gen)[0]
        dst_latent = latent_n.numpy()[0]

        os.makedirs(self.output_path, exist_ok=True)
        save_src_path = os.path.join(self.output_path, 'src.fitting.png')
        cv2.imwrite(save_src_path,
                    cv2.cvtColor(np.asarray(src_img), cv2.COLOR_RGB2BGR))
        save_dst_path = os.path.join(self.output_path, 'dst.fitting.png')
        cv2.imwrite(save_dst_path, cv2.cvtColor(dst_img, cv2.COLOR_RGB2BGR))
        save_npy_path = os.path.join(self.output_path, 'dst.fitting.npy')
        np.save(save_npy_path, dst_latent)

        return np.asarray(src_img), dst_img, dst_latent