remasternet.py 7.6 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

class TempConv(nn.Layer):
   def __init__(self, in_planes, out_planes, kernel_size=(1,3,3), stride=(1,1,1), padding=(0,1,1) ):
      super(TempConv, self).__init__()
      self.conv3d  = nn.Conv3d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding)
      self.bn      = nn.BatchNorm( out_planes )
   def forward(self, x):
      return F.elu( self.bn(self.conv3d(x)))

class Upsample(nn.Layer):
   def __init__(self, in_planes, out_planes, scale_factor=(1,2,2)):
      super(Upsample, self).__init__()
      self.scale_factor = scale_factor
      self.conv3d = nn.Conv3d( in_planes, out_planes, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
      self.bn   = nn.BatchNorm( out_planes )
      
   def forward(self, x):
       out_size = x.shape[2:]
       for i in range(3):
           out_size[i] = self.scale_factor[i] * out_size[i]
        
       return F.elu( self.bn( self.conv3d( F.interpolate(x, size=out_size, mode='trilinear', align_corners=False, data_format='NCDHW', align_mode=0))))

class UpsampleConcat(nn.Layer):
   def __init__(self, in_planes_up, in_planes_flat, out_planes):
      super(UpsampleConcat, self).__init__()
      self.conv3d = TempConv( in_planes_up + in_planes_flat, out_planes, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
   def forward(self, x1, x2):
        scale_factor=(1,2,2)
        out_size = x1.shape[2:]
        for i in range(3):
            out_size[i] = scale_factor[i] * out_size[i]
            
        x1 = F.interpolate(x1, size=out_size, mode='trilinear', align_corners=False, data_format='NCDHW', align_mode=0)
        x = paddle.concat([x1, x2], axis=1)
        return self.conv3d(x)

class SourceReferenceAttention(paddle.fluid.dygraph.Layer):
    """
    Source-Reference Attention Layer
    """
    def __init__(self, in_planes_s, in_planes_r):
        """
        Parameters
        ----------
            in_planes_s: int
                Number of input source feature vector channels.
            in_planes_r: int
                Number of input reference feature vector channels.
        """
        super(SourceReferenceAttention,self).__init__()
        self.query_conv = nn.Conv3d(in_channels=in_planes_s,
                out_channels=in_planes_s//8, kernel_size=1 )
        self.key_conv   = nn.Conv3d(in_channels=in_planes_r,
                out_channels=in_planes_r//8, kernel_size=1 )
        self.value_conv = nn.Conv3d(in_channels=in_planes_r,
                out_channels=in_planes_r, kernel_size=1 )
        self.gamma = self.create_parameter(shape=[1], dtype=self.query_conv.weight.dtype, 
                            default_initializer=paddle.fluid.initializer.Constant(0.0))

    def forward(self, source, reference):
        s_batchsize, sC, sT, sH, sW = source.shape
        r_batchsize, rC, rT, rH, rW = reference.shape
        
        proj_query = paddle.reshape(self.query_conv(source), [s_batchsize,-1,sT*sH*sW])
        proj_query = paddle.transpose(proj_query, [0, 2, 1])
        proj_key   = paddle.reshape(self.key_conv(reference), [r_batchsize,-1,rT*rW*rH])
        energy     = paddle.bmm( proj_query, proj_key )
        attention  = F.softmax(energy)
        
        proj_value = paddle.reshape(self.value_conv(reference), [r_batchsize,-1,rT*rH*rW])
        
        out    = paddle.bmm(proj_value,paddle.transpose(attention, [0,2,1]))
        out    = paddle.reshape(out, [s_batchsize, sC, sT, sH, sW])
        out    = self.gamma*out + source
        return out, attention


class NetworkR( nn.Layer ):
   def __init__(self):
      super(NetworkR, self).__init__()

      self.layers = nn.Sequential(
         nn.ReplicationPad3d((1,1,1,1,1,1)),
         TempConv(   1,  64, kernel_size=(3,3,3), stride=(1,2,2), padding=(0,0,0) ),
         TempConv(  64, 128, kernel_size=(3,3,3), padding=(1,1,1) ),
         TempConv( 128, 128, kernel_size=(3,3,3), padding=(1,1,1) ),
         TempConv( 128, 256, kernel_size=(3,3,3), stride=(1,2,2), padding=(1,1,1) ),
         TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
         TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
         TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
         TempConv( 256, 256, kernel_size=(3,3,3), padding=(1,1,1) ),
         Upsample( 256, 128 ),
         TempConv( 128,  64, kernel_size=(3,3,3), padding=(1,1,1) ),
         TempConv(  64,  64, kernel_size=(3,3,3), padding=(1,1,1) ),
         Upsample( 64, 16 ),
         nn.Conv3d( 16, 1, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
       )
   def forward(self, x):
      return paddle.clip((x + paddle.fluid.layers.tanh( self.layers( ((x * 1).detach())-0.4462414 ) )), 0.0, 1.0)

class NetworkC( nn.Layer ):
   def __init__(self):
      super(NetworkC, self).__init__()

      self.down1 = nn.Sequential(
         nn.ReplicationPad3d((1,1,1,1,0,0)),
         TempConv(   1,  64, stride=(1,2,2), padding=(0,0,0) ),
         TempConv(  64, 128 ),
         TempConv( 128, 128 ),
         TempConv( 128, 256, stride=(1,2,2) ),
         TempConv( 256, 256 ),
         TempConv( 256, 256 ),
         TempConv( 256, 512, stride=(1,2,2) ),
         TempConv( 512, 512 ),
         TempConv( 512, 512 )                  
      )
      self.flat = nn.Sequential(
         TempConv( 512, 512 ),
         TempConv( 512, 512 )
      )
      self.down2 = nn.Sequential(
         TempConv( 512, 512, stride=(1,2,2) ),
         TempConv( 512, 512 ),
      )
      self.stattn1 = SourceReferenceAttention( 512, 512 ) # Source-Reference Attention
      self.stattn2 = SourceReferenceAttention( 512, 512 ) # Source-Reference Attention
      self.selfattn1 = SourceReferenceAttention( 512, 512 ) # Self Attention
      self.conv1 = TempConv( 512, 512 )
      self.up1 = UpsampleConcat( 512, 512, 512 ) # 1/8
      self.selfattn2 = SourceReferenceAttention( 512, 512 ) # Self Attention
      self.conv2 = TempConv( 512, 256, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
      self.up2 = nn.Sequential(
         Upsample( 256, 128 ), # 1/4
         TempConv( 128, 64, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
      )      
      self.up3 = nn.Sequential(
         Upsample( 64, 32 ), # 1/2
         TempConv( 32, 16, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
      )
      self.up4 = nn.Sequential(
         Upsample( 16, 8 ), # 1/1
         nn.Conv3d( 8, 2, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1) )
      )
      self.reffeatnet1 = nn.Sequential(
         TempConv(   3,  64, stride=(1,2,2) ),
         TempConv(  64, 128 ),
         TempConv( 128, 128 ),
         TempConv( 128, 256, stride=(1,2,2) ),
         TempConv( 256, 256 ),
         TempConv( 256, 256 ),
         TempConv( 256, 512, stride=(1,2,2) ),
         TempConv( 512, 512 ),
         TempConv( 512, 512 ),
      )
      self.reffeatnet2 = nn.Sequential(
         TempConv( 512, 512, stride=(1,2,2) ),
         TempConv( 512, 512 ),
         TempConv( 512, 512 ),
      )

   def forward(self, x, x_refs=None):
      x1 = self.down1( x - 0.4462414 )
      if x_refs is not None:
         x_refs = paddle.transpose(x_refs, [0, 2, 1, 3, 4]) # [B,T,C,H,W] --> [B,C,T,H,W]
         reffeat = self.reffeatnet1( x_refs-0.48 )
         x1, _ = self.stattn1( x1, reffeat )

      x2 = self.flat( x1 )
      out = self.down2( x1 )
      if x_refs is not None:
         reffeat2 = self.reffeatnet2( reffeat )
         out, _ = self.stattn2( out, reffeat2 )
      out = self.conv1( out )
      out, _ = self.selfattn1( out, out )
      out = self.up1( out, x2 )
      out, _ = self.selfattn2( out, out )
      out = self.conv2( out )
      out = self.up2( out )
      out = self.up3( out )
      out = self.up4( out )

      return F.sigmoid( out )