sr_model.py 2.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import paddle
import paddle.nn as nn
L
LielinJiang 已提交
17

L
LielinJiang 已提交
18
from .generators.builder import build_generator
19
from .criterions.builder import build_criterion
L
LielinJiang 已提交
20 21
from .base_model import BaseModel
from .builder import MODELS
22
from ..utils.visual import tensor2img
L
LielinJiang 已提交
23 24 25


@MODELS.register()
26 27 28 29 30 31 32 33 34 35
class BaseSRModel(BaseModel):
    """Base SR model for single image super-resolution.
    """
    def __init__(self, generator, pixel_criterion=None):
        """
        Args:
            generator (dict): config of generator.
            pixel_criterion (dict): config of pixel criterion.
        """
        super(BaseSRModel, self).__init__()
L
LielinJiang 已提交
36

37
        self.nets['generator'] = build_generator(generator)
L
LielinJiang 已提交
38

39 40
        if pixel_criterion:
            self.pixel_criterion = build_criterion(pixel_criterion)
L
LielinJiang 已提交
41

42 43 44
    def setup_input(self, input):
        self.lq = paddle.fluid.dygraph.to_variable(input['lq'])
        self.visual_items['lq'] = self.lq
L
LielinJiang 已提交
45
        if 'gt' in input:
46 47
            self.gt = paddle.fluid.dygraph.to_variable(input['gt'])
            self.visual_items['gt'] = self.gt
L
LielinJiang 已提交
48 49 50 51
        self.image_paths = input['lq_path']

    def forward(self):
        pass
L
LielinJiang 已提交
52

53 54
    def train_iter(self, optims=None):
        optims['optim'].clear_grad()
L
LielinJiang 已提交
55

56 57
        self.output = self.nets['generator'](self.lq)
        self.visual_items['output'] = self.output
L
LielinJiang 已提交
58
        # pixel loss
59 60 61 62 63
        loss_pixel = self.pixel_criterion(self.output, self.gt)
        self.losses['loss_pixel'] = loss_pixel

        loss_pixel.backward()
        optims['optim'].step()
L
LielinJiang 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    def test_iter(self, metrics=None):
        self.nets['generator'].eval()
        with paddle.no_grad():
            self.output = self.nets['generator'](self.lq)
            self.visual_items['output'] = self.output
        self.nets['generator'].train()

        out_img = []
        gt_img = []
        for out_tensor, gt_tensor in zip(self.output, self.gt):
            out_img.append(tensor2img(out_tensor, (0., 1.)))
            gt_img.append(tensor2img(gt_tensor, (0., 1.)))

        if metrics is not None:
            for metric in metrics.values():
                metric.update(out_img, gt_img)