esrgan_model.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle

from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from .sr_model import BaseSRModel
from .builder import MODELS

from .criterions import build_criterion


@MODELS.register()
class ESRGAN(BaseSRModel):
    """
    This class implements the ESRGAN model.

    ESRGAN paper: https://arxiv.org/pdf/1809.00219.pdf
    """
    def __init__(self,
                 generator,
                 discriminator=None,
                 pixel_criterion=None,
                 perceptual_criterion=None,
                 gan_criterion=None):
        """Initialize the ESRGAN class.

        Args:
            generator (dict): config of generator.
            discriminator (dict): config of discriminator.
            pixel_criterion (dict): config of pixel criterion.
            perceptual_criterion (dict): config of perceptual criterion.
            gan_criterion (dict): config of gan criterion.
        """
        super(ESRGAN, self).__init__(generator)

        self.nets['generator'] = build_generator(generator)

        if discriminator:
            self.nets['discriminator'] = build_discriminator(discriminator)

        if pixel_criterion:
            self.pixel_criterion = build_criterion(pixel_criterion)

        if perceptual_criterion:
            self.perceptual_criterion = build_criterion(perceptual_criterion)

        if gan_criterion:
            self.gan_criterion = build_criterion(gan_criterion)

    def train_iter(self, optimizers=None):
        self.set_requires_grad(self.nets['discriminator'], False)
        optimizers['optimG'].clear_grad()
        l_total = 0
        self.output = self.nets['generator'](self.lq)
        self.visual_items['output'] = self.output
        # pixel loss
        if self.pixel_criterion:
            l_pix = self.pixel_criterion(self.output, self.gt)
            l_total += l_pix
            self.losses['loss_pix'] = l_pix
        if self.perceptual_criterion:
            l_g_percep, l_g_style = self.perceptual_criterion(
                self.output, self.gt)
            # l_total += l_pix
            if l_g_percep is not None:
                l_total += l_g_percep
                self.losses['loss_percep'] = l_g_percep
            if l_g_style is not None:
                l_total += l_g_style
                self.losses['loss_style'] = l_g_style

        # gan loss (relativistic gan)
        real_d_pred = self.nets['discriminator'](self.gt).detach()
        fake_g_pred = self.nets['discriminator'](self.output)
        l_g_real = self.gan_criterion(real_d_pred - paddle.mean(fake_g_pred),
                                      False,
                                      is_disc=False)
        l_g_fake = self.gan_criterion(fake_g_pred - paddle.mean(real_d_pred),
                                      True,
                                      is_disc=False)
        l_g_gan = (l_g_real + l_g_fake) / 2

        l_total += l_g_gan
        self.losses['l_g_gan'] = l_g_gan

        l_total.backward()
        optimizers['optimG'].step()

        self.set_requires_grad(self.nets['discriminator'], True)
        optimizers['optimD'].clear_grad()
        # real
        fake_d_pred = self.nets['discriminator'](self.output).detach()
        real_d_pred = self.nets['discriminator'](self.gt)
        l_d_real = self.gan_criterion(
            real_d_pred - paddle.mean(fake_d_pred), True, is_disc=True) * 0.5

        # fake
        fake_d_pred = self.nets['discriminator'](self.output.detach())
        l_d_fake = self.gan_criterion(
            fake_d_pred - paddle.mean(real_d_pred.detach()),
            False,
            is_disc=True) * 0.5

        (l_d_real + l_d_fake).backward()
        optimizers['optimD'].step()

        self.losses['l_d_real'] = l_d_real
        self.losses['l_d_fake'] = l_d_fake
        self.losses['out_d_real'] = paddle.mean(real_d_pred.detach())
        self.losses['out_d_fake'] = paddle.mean(fake_d_pred.detach())