edvr_m_w_tsa.yaml 1.8 KB
Newer Older
W
wangna11BD 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
total_iters: 600000
output_dir: output_dir
checkpoints_dir: checkpoints
# tensor range for function tensor2img
min_max:
  (0., 1.)

model:
  name: EDVRModel
  tsa_iter: 50000
  generator:
    name: EDVRNet
    in_nf: 3
    out_nf: 3
    scale_factor: 4
    nf: 64
    nframes: 5
    groups: 8
    front_RBs: 5
    back_RBs: 10
    center: 2
    predeblur: False
    HR_in: False
    w_TSA: True
  pixel_criterion:
    name: CharbonnierLoss

dataset:
  train:
    name: REDSDataset
    mode: train
    gt_folder: data/REDS/train_sharp/X4
    lq_folder: data/REDS/train_sharp_bicubic/X4
    img_format: png
    crop_size: 256
    interval_list: [1]
    random_reverse: False
    number_frames: 5
    use_flip: True
    use_rot: True
    buf_size: 1024
    scale: 4
    fix_random_seed: 10
    num_workers: 3
W
wangna11BD 已提交
45
    batch_size: 4 # 8GUPs
W
wangna11BD 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


  test:
    name: REDSDataset
    mode: test
    gt_folder: data/REDS/REDS4_test_sharp/X4
    lq_folder: data/REDS/REDS4_test_sharp_bicubic/X4
    img_format: png
    interval_list: [1]
    random_reverse: False
    number_frames: 5
    batch_size: 1
    use_flip: False
    use_rot: False
    buf_size: 1024
    scale: 4
    fix_random_seed: 10

lr_scheduler:
  name: CosineAnnealingRestartLR
  learning_rate: !!float 4e-4
  periods: [50000, 100000, 150000, 150000, 150000]
  restart_weights: [1, 1, 1, 1, 1]
  eta_min: !!float 1e-7

optimizer:
  name: Adam
  # add parameters of net_name to optim
  # name should in self.nets
  net_names:
    - generator
  beta1: 0.9
  beta2: 0.99

validate:
  interval: 5000
  save_img: false

  metrics:
    psnr: # metric name, can be arbitrary
      name: PSNR
      crop_border: 0
      test_y_channel: False
    ssim:
      name: SSIM
      crop_border: 0
      test_y_channel: False

log_config:
  interval: 10
  visiual_interval: 5000

snapshot_config:
  interval: 5000