data.py 2.7 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4
import cv2

import numpy as np

L
LielinJiang 已提交
5

L
LielinJiang 已提交
6 7 8 9
def read_img(path, size=None, is_gt=False):
    """read image by cv2
    return: Numpy float32, HWC, BGR, [0,1]"""
    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
L
LielinJiang 已提交
10

L
LielinJiang 已提交
11 12 13
    img = img.astype(np.float32) / 255.
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
L
LielinJiang 已提交
14

L
LielinJiang 已提交
15
    if img.shape[2] > 3:
L
LielinJiang 已提交
16 17 18
        img = img[:, :, :3]
    return img

L
LielinJiang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

def get_test_neighbor_frames(crt_i, N, max_n, padding='new_info'):
    """Generate an index list for reading N frames from a sequence of images
    Args:
        crt_i (int): current center index
        max_n (int): max number of the sequence of images (calculated from 1)
        N (int): reading N frames
        padding (str): padding mode, one of replicate | reflection | new_info | circle
            Example: crt_i = 0, N = 5
            replicate: [0, 0, 0, 1, 2]
            reflection: [2, 1, 0, 1, 2]
            new_info: [4, 3, 0, 1, 2]
            circle: [3, 4, 0, 1, 2]

    Returns:
        return_l (list [int]): a list of indexes
    """
    max_n = max_n - 1
    n_pad = N // 2
    return_l = []

    for i in range(crt_i - n_pad, crt_i + n_pad + 1):
        if i < 0:
            if padding == 'replicate':
                add_idx = 0
            elif padding == 'reflection':
                add_idx = -i
            elif padding == 'new_info':
                add_idx = (crt_i + n_pad) + (-i)
            elif padding == 'circle':
                add_idx = N + i
            else:
                raise ValueError('Wrong padding mode')
        elif i > max_n:
            if padding == 'replicate':
                add_idx = max_n
            elif padding == 'reflection':
                add_idx = max_n * 2 - i
            elif padding == 'new_info':
                add_idx = (crt_i - n_pad) - (i - max_n)
            elif padding == 'circle':
                add_idx = i - N
            else:
                raise ValueError('Wrong padding mode')
        else:
            add_idx = i
        return_l.append(add_idx)
L
LielinJiang 已提交
66
    # name_b = '{:08d}'.format(crt_i)
L
LielinJiang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    return return_l


class EDVRDataset:
    def __init__(self, frame_paths):
        self.frames = frame_paths

    def __getitem__(self, index):
        indexs = get_test_neighbor_frames(index, 5, len(self.frames))
        frame_list = []
        for i in indexs:
            img = read_img(self.frames[i])
            frame_list.append(img)

        img_LQs = np.stack(frame_list, axis=0)
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_LQs = img_LQs[:, :, :, [2, 1, 0]]
        img_LQs = np.transpose(img_LQs, (0, 3, 1, 2)).astype('float32')

        return img_LQs, self.frames[index]

    def __len__(self):
L
LielinJiang 已提交
89
        return len(self.frames)