first_order_predictor.py 12.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import sys
17 18
import cv2
import math
L
LielinJiang 已提交
19 20 21 22 23 24 25 26 27

import yaml
import pickle
import imageio
import numpy as np
from tqdm import tqdm
from scipy.spatial import ConvexHull

import paddle
L
LielinJiang 已提交
28
from ppgan.utils.download import get_path_from_url
L
LielinJiang 已提交
29 30 31
from ppgan.utils.animate import normalize_kp
from ppgan.modules.keypoint_detector import KPDetector
from ppgan.models.generators.occlusion_aware import OcclusionAwareGenerator
32
from ppgan.faceutils import face_detection
L
LielinJiang 已提交
33 34 35

from .base_predictor import BasePredictor

36
IMAGE_SIZE = 256
L
LielinJiang 已提交
37 38 39 40 41 42 43 44 45

class FirstOrderPredictor(BasePredictor):
    def __init__(self,
                 output='output',
                 weight_path=None,
                 config=None,
                 relative=False,
                 adapt_scale=False,
                 find_best_frame=False,
46
                 best_frame=None,
47
                 ratio=1.0,
L
lijianshe02 已提交
48
                 filename='result.mp4',
F
FNRE 已提交
49 50
                 face_detector='sfd',
                 multi_person=False):
L
LielinJiang 已提交
51
        if config is not None and isinstance(config, str):
F
FNRE 已提交
52 53
            with open(config) as f:
                self.cfg = yaml.load(f, Loader=yaml.SafeLoader)
L
LielinJiang 已提交
54 55 56 57
        elif isinstance(config, dict):
            self.cfg = config
        elif config is None:
            self.cfg = {
F
FNRE 已提交
58
                'model': {
L
LielinJiang 已提交
59 60 61 62 63
                    'common_params': {
                        'num_kp': 10,
                        'num_channels': 3,
                        'estimate_jacobian': True
                    },
F
FNRE 已提交
64 65 66 67
                    'generator': {
                        'kp_detector_cfg': {
                            'temperature': 0.1,
                            'block_expansion': 32,
L
LielinJiang 已提交
68
                            'max_features': 1024,
F
FNRE 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
                            'scale_factor': 0.25,
                            'num_blocks': 5
                        },
                        'generator_cfg': {
                            'block_expansion': 64,
                            'max_features': 512,
                            'num_down_blocks': 2,
                            'num_bottleneck_blocks': 6,
                            'estimate_occlusion_map': True,
                            'dense_motion_params': {
                                'block_expansion': 64,
                                'max_features': 1024,
                                'num_blocks': 5,
                                'scale_factor': 0.25
                            }
L
LielinJiang 已提交
84 85 86 87 88 89
                        }
                    }
                }
            }
            if weight_path is None:
                vox_cpk_weight_url = 'https://paddlegan.bj.bcebos.com/applications/first_order_model/vox-cpk.pdparams'
L
LielinJiang 已提交
90
                weight_path = get_path_from_url(vox_cpk_weight_url)
L
LielinJiang 已提交
91 92

        self.weight_path = weight_path
93 94
        if not os.path.exists(output):
            os.makedirs(output)
L
LielinJiang 已提交
95
        self.output = output
96
        self.filename = filename
L
LielinJiang 已提交
97 98 99 100
        self.relative = relative
        self.adapt_scale = adapt_scale
        self.find_best_frame = find_best_frame
        self.best_frame = best_frame
101
        self.ratio = ratio
L
lijianshe02 已提交
102
        self.face_detector = face_detector
L
LielinJiang 已提交
103 104
        self.generator, self.kp_detector = self.load_checkpoints(
            self.cfg, self.weight_path)
F
FNRE 已提交
105
        self.multi_person = multi_person
L
LielinJiang 已提交
106

F
FNRE 已提交
107 108 109 110 111 112 113 114 115
    def read_img(self, path):
        img = imageio.imread(path)
        if img.ndim == 2:
            img = np.expand_dims(img, axis=2)
        # som images have 4 channels
        if img.shape[2] > 3:
            img = img[:,:,:3]
        return img

L
LielinJiang 已提交
116
    def run(self, source_image, driving_video):
F
FNRE 已提交
117
        def get_prediction(face_image):
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
            if self.find_best_frame or self.best_frame is not None:
                i = self.best_frame if self.best_frame is not None else self.find_best_frame_func(
                    source_image, driving_video)

                print("Best frame: " + str(i))
                driving_forward = driving_video[i:]
                driving_backward = driving_video[:(i + 1)][::-1]
                predictions_forward = self.make_animation(
                    face_image,
                    driving_forward,
                    self.generator,
                    self.kp_detector,
                    relative=self.relative,
                    adapt_movement_scale=self.adapt_scale)
                predictions_backward = self.make_animation(
                    face_image,
                    driving_backward,
                    self.generator,
                    self.kp_detector,
                    relative=self.relative,
                    adapt_movement_scale=self.adapt_scale)
                predictions = predictions_backward[::-1] + predictions_forward[
                    1:]
            else:
                predictions = self.make_animation(
                    face_image,
                    driving_video,
                    self.generator,
                    self.kp_detector,
                    relative=self.relative,
                    adapt_movement_scale=self.adapt_scale)
F
FNRE 已提交
149
            return predictions
150

F
FNRE 已提交
151
        source_image = self.read_img(source_image)
F
FNRE 已提交
152 153 154 155 156 157 158
        reader = imageio.get_reader(driving_video)
        fps = reader.get_meta_data()['fps']
        driving_video = []
        try:
            for im in reader:
                driving_video.append(im)
        except RuntimeError:
F
FNRE 已提交
159
            print("Read driving video error!")
F
FNRE 已提交
160 161 162 163
            pass
        reader.close()

        driving_video = [
164
            cv2.resize(frame, (IMAGE_SIZE, IMAGE_SIZE)) / 255.0 for frame in driving_video
F
FNRE 已提交
165 166 167 168 169 170 171 172 173
        ]
        results = []

        bboxes = self.extract_bbox(source_image.copy())
        print(str(len(bboxes)) + " persons have been detected")

        # for multi person
        for rec in bboxes:
            face_image = source_image.copy()[rec[1]:rec[3], rec[0]:rec[2]]
174
            face_image = cv2.resize(face_image, (IMAGE_SIZE, IMAGE_SIZE)) / 255.0
F
FNRE 已提交
175
            predictions = get_prediction(face_image)
176
            results.append({'rec': rec, 'predict': predictions})
F
FNRE 已提交
177 178
            if len(bboxes) == 1 or not self.multi_person:
                break 
179
        out_frame = []
180

181 182 183
        for i in range(len(driving_video)):
            frame = source_image.copy()
            for result in results:
F
FNRE 已提交
184
                x1, y1, x2, y2, _ = result['rec']
185 186 187 188
                h = y2 - y1
                w = x2 - x1
                out = result['predict'][i] * 255.0
                out = cv2.resize(out.astype(np.uint8), (x2 - x1, y2 - y1))
189 190
                if len(results) == 1:
                    frame[y1:y2, x1:x2] = out
F
FNRE 已提交
191
                    break
192 193 194 195 196 197 198 199 200
                else:
                    patch = np.zeros(frame.shape).astype('uint8')
                    patch[y1:y2, x1:x2] = out
                    mask = np.zeros(frame.shape[:2]).astype('uint8')
                    cx = int((x1 + x2) / 2)
                    cy = int((y1 + y2) / 2)
                    cv2.circle(mask, (cx, cy), math.ceil(h * self.ratio),
                               (255, 255, 255), -1, 8, 0)
                    frame = cv2.copyTo(patch, mask, frame)
201 202

            out_frame.append(frame)
203
        imageio.mimsave(os.path.join(self.output, self.filename),
204 205
                        [frame for frame in out_frame],
                        fps=fps)
L
LielinJiang 已提交
206 207 208 209

    def load_checkpoints(self, config, checkpoint_path):

        generator = OcclusionAwareGenerator(
F
FNRE 已提交
210 211
            **config['model']['generator']['generator_cfg'],
            **config['model']['common_params'])
L
LielinJiang 已提交
212

F
FNRE 已提交
213 214 215
        kp_detector = KPDetector(
            **config['model']['generator']['kp_detector_cfg'],
            **config['model']['common_params'])
L
LielinJiang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

        checkpoint = paddle.load(self.weight_path)
        generator.set_state_dict(checkpoint['generator'])

        kp_detector.set_state_dict(checkpoint['kp_detector'])

        generator.eval()
        kp_detector.eval()

        return generator, kp_detector

    def make_animation(self,
                       source_image,
                       driving_video,
                       generator,
                       kp_detector,
                       relative=True,
                       adapt_movement_scale=True):
        with paddle.no_grad():
            predictions = []
            source = paddle.to_tensor(source_image[np.newaxis].astype(
                np.float32)).transpose([0, 3, 1, 2])

            driving = paddle.to_tensor(
                np.array(driving_video)[np.newaxis].astype(
                    np.float32)).transpose([0, 4, 1, 2, 3])
            kp_source = kp_detector(source)
            kp_driving_initial = kp_detector(driving[:, :, 0])

            for frame_idx in tqdm(range(driving.shape[2])):
                driving_frame = driving[:, :, frame_idx]
                kp_driving = kp_detector(driving_frame)
                kp_norm = normalize_kp(
                    kp_source=kp_source,
                    kp_driving=kp_driving,
                    kp_driving_initial=kp_driving_initial,
                    use_relative_movement=relative,
                    use_relative_jacobian=relative,
                    adapt_movement_scale=adapt_movement_scale)
                out = generator(source, kp_source=kp_source, kp_driving=kp_norm)

                predictions.append(
                    np.transpose(out['prediction'].numpy(), [0, 2, 3, 1])[0])
        return predictions

    def find_best_frame_func(self, source, driving):
        import face_alignment

        def normalize_kp(kp):
            kp = kp - kp.mean(axis=0, keepdims=True)
            area = ConvexHull(kp[:, :2]).volume
            area = np.sqrt(area)
            kp[:, :2] = kp[:, :2] / area
            return kp

        fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,
                                          flip_input=True)

        kp_source = fa.get_landmarks(255 * source)[0]
        kp_source = normalize_kp(kp_source)
        norm = float('inf')
        frame_num = 0
        for i, image in tqdm(enumerate(driving)):
            kp_driving = fa.get_landmarks(255 * image)[0]
            kp_driving = normalize_kp(kp_driving)
            new_norm = (np.abs(kp_source - kp_driving)**2).sum()
            if new_norm < norm:
                norm = new_norm
                frame_num = i
        return frame_num
286 287 288

    def extract_bbox(self, image):
        detector = face_detection.FaceAlignment(
L
lijianshe02 已提交
289 290 291
            face_detection.LandmarksType._2D,
            flip_input=False,
            face_detector=self.face_detector)
292 293 294

        frame = [image]
        predictions = detector.get_detections_for_image(np.array(frame))
F
FNRE 已提交
295 296 297
        person_num = len(predictions)
        if person_num == 0:
            return np.array([])
298
        results = []
F
FNRE 已提交
299
        face_boxs = []
300 301 302 303 304 305 306 307
        h, w, _ = image.shape
        for rect in predictions:
            bh = rect[3] - rect[1]
            bw = rect[2] - rect[0]
            cy = rect[1] + int(bh / 2)
            cx = rect[0] + int(bw / 2)
            margin = max(bh, bw)
            y1 = max(0, cy - margin)
308
            x1 = max(0, cx - int(0.8 * margin))
309
            y2 = min(h, cy + margin)
310
            x2 = min(w, cx + int(0.8 * margin))
F
FNRE 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            area = (y2 - y1) * (x2 - x1)
            results.append([x1, y1, x2, y2, area])
        # if a person has more than one bbox, keep the largest one
        # maybe greedy will be better?
        sorted(results, key=lambda area: area[4], reverse=True)
        results_box = [results[0]]
        for i in range(1, person_num):
            num = len(results_box)
            add_person = True
            for j in range(num):
                pre_person = results_box[j]
                iou = self.IOU(pre_person[0], pre_person[1], pre_person[2],
                               pre_person[3], pre_person[4], results[i][0],
                               results[i][1], results[i][2], results[i][3],
                               results[i][4])
                if iou > 0.5:
                    add_person = False
                    break
            if add_person:
                results_box.append(results[i])
        boxes = np.array(results_box)
332
        return boxes
F
FNRE 已提交
333 334 335 336 337 338 339 340 341 342 343 344

    def IOU(self, ax1, ay1, ax2, ay2, sa, bx1, by1, bx2, by2, sb):
        #sa = abs((ax2 - ax1) * (ay2 - ay1))
        #sb = abs((bx2 - bx1) * (by2 - by1))
        x1, y1 = max(ax1, bx1), max(ay1, by1)
        x2, y2 = min(ax2, bx2), min(ay2, by2)
        w = x2 - x1
        h = y2 - y1
        if w < 0 or h < 0:
            return 0.0
        else:
            return 1.0 * w * h / (sa + sb - w * h)