inference.py 18.2 KB
Newer Older
1 2 3
import paddle
import argparse
import numpy as np
4 5 6
import random
import os
from collections import OrderedDict
B
bitcjm 已提交
7 8 9 10
import sys
import cv2

sys.path.append(".")
11 12 13 14 15 16 17

from ppgan.utils.config import get_config
from ppgan.datasets.builder import build_dataloader
from ppgan.engine.trainer import IterLoader
from ppgan.utils.visual import save_image
from ppgan.utils.visual import tensor2img
from ppgan.utils.filesystem import makedirs
18
from ppgan.metrics import build_metric
19

20

L
lzzyzlbb 已提交
21
MODEL_CLASSES = ["pix2pix", "cyclegan", "wav2lip", "esrgan", \
F
FutureSI 已提交
22
                 "edvr", "fom", "stylegan2", "basicvsr", "msvsr", "singan", "swinir", "invdn", "aotgan"]
23 24 25 26 27 28 29 30 31


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_path",
        default=None,
        type=str,
        required=True,
32 33 34 35 36 37 38 39
        help="The path prefix of inference model to be used.",
    )
    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES))
40 41 42 43
    parser.add_argument(
        "--device",
        default="gpu",
        type=str,
44
        choices=["cpu", "gpu", "xpu", "npu"],
45 46 47 48 49
        help="The device to select to train the model, is must be cpu/gpu/xpu.")
    parser.add_argument('-c',
                        '--config-file',
                        metavar="FILE",
                        help='config file path')
50 51 52 53
    parser.add_argument("--output_path",
                        type=str,
                        default="infer_output",
                        help="output_path")
54 55 56 57 58
    # config options
    parser.add_argument("-o",
                        "--opt",
                        nargs='+',
                        help="set configuration options")
59 60 61 62
    # fix random numbers by setting seed
    parser.add_argument('--seed',
                        type=int,
                        default=None,
S
simonsLiang 已提交
63
                        help='fix random numbers by setting seed\".')
L
lzzyzlbb 已提交
64
    # for tensorRT
S
simonsLiang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    parser.add_argument("--run_mode",
                        default="fluid",
                        type=str,
                        choices=["fluid", "trt_fp32", "trt_fp16"],
                        help="mode of running(fluid/trt_fp32/trt_fp16)")
    parser.add_argument("--trt_min_shape",
                        default=1,
                        type=int,
                        help="trt_min_shape for tensorRT")
    parser.add_argument("--trt_max_shape",
                        default=1280,
                        type=int,
                        help="trt_max_shape for tensorRT")
    parser.add_argument("--trt_opt_shape",
                        default=640,
                        type=int,
                        help="trt_opt_shape for tensorRT")
    parser.add_argument("--min_subgraph_size",
                        default=3,
                        type=int,
                        help="trt_opt_shape for tensorRT")
    parser.add_argument("--batch_size",
                        default=1,
                        type=int,
                        help="batch_size for tensorRT")
    parser.add_argument("--use_dynamic_shape",
                        dest="use_dynamic_shape",
                        action="store_true",
                        help="use_dynamic_shape for tensorRT")
    parser.add_argument("--trt_calib_mode",
                        dest="trt_calib_mode",
                        action="store_true",
                        help="trt_calib_mode for tensorRT")
98 99 100 101
    args = parser.parse_args()
    return args


S
simonsLiang 已提交
102 103 104 105 106 107 108 109 110 111
def create_predictor(model_path,
                     device="gpu",
                     run_mode='fluid',
                     batch_size=1,
                     min_subgraph_size=3,
                     use_dynamic_shape=False,
                     trt_min_shape=1,
                     trt_max_shape=1280,
                     trt_opt_shape=640,
                     trt_calib_mode=False):
112 113 114 115 116 117
    config = paddle.inference.Config(model_path + ".pdmodel",
                                     model_path + ".pdiparams")
    if device == "gpu":
        config.enable_use_gpu(100, 0)
    elif device == "cpu":
        config.disable_gpu()
118 119
    elif device == "npu":
        config.enable_npu()
120
    elif device == "xpu":
121
        config.enable_xpu()
122 123
    else:
        config.disable_gpu()
S
simonsLiang 已提交
124

L
lzzyzlbb 已提交
125 126 127 128 129 130
    precision_map = {
        'trt_int8': paddle.inference.Config.Precision.Int8,
        'trt_fp32': paddle.inference.Config.Precision.Float32,
        'trt_fp16': paddle.inference.Config.Precision.Half
    }
    if run_mode in precision_map.keys():
S
simonsLiang 已提交
131 132 133 134 135 136
        config.enable_tensorrt_engine(workspace_size=1 << 25,
                                      max_batch_size=batch_size,
                                      min_subgraph_size=min_subgraph_size,
                                      precision_mode=precision_map[run_mode],
                                      use_static=False,
                                      use_calib_mode=trt_calib_mode)
L
lzzyzlbb 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150

        if use_dynamic_shape:
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
151 152 153 154

    predictor = paddle.inference.create_predictor(config)
    return predictor

S
simonsLiang 已提交
155

156 157 158 159 160 161 162 163 164 165
def setup_metrics(cfg):
    metrics = OrderedDict()
    if isinstance(list(cfg.values())[0], dict):
        for metric_name, cfg_ in cfg.items():
            metrics[metric_name] = build_metric(cfg_)
    else:
        metric = build_metric(cfg)
        metrics[metric.__class__.__name__] = metric

    return metrics
166

S
simonsLiang 已提交
167

168 169
def main():
    args = parse_args()
170 171 172
    if args.seed:
        paddle.seed(args.seed)
        random.seed(args.seed)
S
simonsLiang 已提交
173
        np.random.seed(args.seed)
174
    cfg = get_config(args.config_file, args.opt)
S
simonsLiang 已提交
175 176 177 178
    predictor = create_predictor(args.model_path, args.device, args.run_mode,
                                 args.batch_size, args.min_subgraph_size,
                                 args.use_dynamic_shape, args.trt_min_shape,
                                 args.trt_max_shape, args.trt_opt_shape,
L
lzzyzlbb 已提交
179
                                 args.trt_calib_mode)
180 181 182 183
    input_handles = [
        predictor.get_input_handle(name)
        for name in predictor.get_input_names()
    ]
L
lzzyzlbb 已提交
184

185 186 187 188
    output_handle = predictor.get_output_handle(predictor.get_output_names()[0])
    test_dataloader = build_dataloader(cfg.dataset.test,
                                       is_train=False,
                                       distributed=False)
189 190 191 192 193 194 195 196

    max_eval_steps = len(test_dataloader)
    iter_loader = IterLoader(test_dataloader)
    min_max = cfg.get('min_max', None)
    if min_max is None:
        min_max = (-1., 1.)

    model_type = args.model_type
197 198 199 200 201 202 203 204 205
    makedirs(os.path.join(args.output_path, model_type))

    validate_cfg = cfg.get('validate', None)
    metrics = None
    if validate_cfg and 'metrics' in validate_cfg:
        metrics = setup_metrics(validate_cfg['metrics'])
        for metric in metrics.values():
            metric.reset()

206 207 208 209 210 211 212
    for i in range(max_eval_steps):
        data = next(iter_loader)
        if model_type == "pix2pix":
            real_A = data['B'].numpy()
            input_handles[0].copy_from_cpu(real_A)
            predictor.run()
            prediction = output_handle.copy_to_cpu()
213 214
            prediction = paddle.to_tensor(prediction)
            image_numpy = tensor2img(prediction[0], min_max)
S
simonsLiang 已提交
215 216 217
            save_image(
                image_numpy,
                os.path.join(args.output_path, "pix2pix/{}.png".format(i)))
218 219 220 221 222
            metric_file = os.path.join(args.output_path, "pix2pix/metric.txt")
            real_B = paddle.to_tensor(data['A'])
            for metric in metrics.values():
                metric.update(prediction, real_B)

223 224 225 226 227
        elif model_type == "cyclegan":
            real_A = data['A'].numpy()
            input_handles[0].copy_from_cpu(real_A)
            predictor.run()
            prediction = output_handle.copy_to_cpu()
228 229
            prediction = paddle.to_tensor(prediction)
            image_numpy = tensor2img(prediction[0], min_max)
S
simonsLiang 已提交
230 231 232
            save_image(
                image_numpy,
                os.path.join(args.output_path, "cyclegan/{}.png".format(i)))
233 234 235 236 237
            metric_file = os.path.join(args.output_path, "cyclegan/metric.txt")
            real_B = paddle.to_tensor(data['B'])
            for metric in metrics.values():
                metric.update(prediction, real_B)

238 239 240 241 242 243 244 245 246 247 248
        elif model_type == "wav2lip":
            indiv_mels, x = data['indiv_mels'].numpy()[0], data['x'].numpy()[0]
            x = x.transpose([1, 0, 2, 3])
            input_handles[0].copy_from_cpu(indiv_mels)
            input_handles[1].copy_from_cpu(x)
            predictor.run()
            prediction = output_handle.copy_to_cpu()
            for j in range(prediction.shape[0]):
                prediction[j] = prediction[j][::-1, :, :]
                image_numpy = paddle.to_tensor(prediction[j])
                image_numpy = tensor2img(image_numpy, (0, 1))
249 250
                save_image(image_numpy,
                           "infer_output/wav2lip/{}_{}.png".format(i, j))
251

252 253 254 255 256 257 258
        elif model_type == "esrgan":
            lq = data['lq'].numpy()
            input_handles[0].copy_from_cpu(lq)
            predictor.run()
            prediction = output_handle.copy_to_cpu()
            prediction = paddle.to_tensor(prediction[0])
            image_numpy = tensor2img(prediction, min_max)
B
Birdylx 已提交
259 260 261 262 263 264 265 266 267
            gt_numpy = tensor2img(data['gt'][0], min_max)
            save_image(
                image_numpy,
                os.path.join(args.output_path, "esrgan/{}.png".format(i)))
            metric_file = os.path.join(args.output_path, model_type,
                                       "metric.txt")
            for metric in metrics.values():
                metric.update(image_numpy, gt_numpy)
            break
268 269 270 271 272 273 274
        elif model_type == "edvr":
            lq = data['lq'].numpy()
            input_handles[0].copy_from_cpu(lq)
            predictor.run()
            prediction = output_handle.copy_to_cpu()
            prediction = paddle.to_tensor(prediction[0])
            image_numpy = tensor2img(prediction, min_max)
B
Birdylx 已提交
275 276 277 278 279 280 281 282
            gt_numpy = tensor2img(data['gt'][0, 0], min_max)
            save_image(image_numpy,
                       os.path.join(args.output_path, "edvr/{}.png".format(i)))
            metric_file = os.path.join(args.output_path, model_type,
                                       "metric.txt")
            for metric in metrics.values():
                metric.update(image_numpy, gt_numpy)
            break
283 284 285 286 287 288
        elif model_type == "stylegan2":
            noise = paddle.randn([1, 1, 512]).cpu().numpy()
            input_handles[0].copy_from_cpu(noise)
            input_handles[1].copy_from_cpu(np.array([0.7]).astype('float32'))
            predictor.run()
            prediction = output_handle.copy_to_cpu()
289 290
            prediction = paddle.to_tensor(prediction)
            image_numpy = tensor2img(prediction[0], min_max)
S
simonsLiang 已提交
291 292 293
            save_image(
                image_numpy,
                os.path.join(args.output_path, "stylegan2/{}.png".format(i)))
294 295 296 297
            metric_file = os.path.join(args.output_path, "stylegan2/metric.txt")
            real_img = paddle.to_tensor(data['A'])
            for metric in metrics.values():
                metric.update(prediction, real_img)
L
lzzyzlbb 已提交
298
        elif model_type in ["basicvsr", "msvsr"]:
299 300 301
            lq = data['lq'].numpy()
            input_handles[0].copy_from_cpu(lq)
            predictor.run()
L
lzzyzlbb 已提交
302
            if len(predictor.get_output_names()) > 1:
S
simonsLiang 已提交
303 304
                output_handle = predictor.get_output_handle(
                    predictor.get_output_names()[-1])
305
            prediction = output_handle.copy_to_cpu()
306 307
            prediction = paddle.to_tensor(prediction)
            _, t, _, _, _ = prediction.shape
L
lzzyzlbb 已提交
308

309 310 311 312 313
            out_img = []
            gt_img = []
            for ti in range(t):
                out_tensor = prediction[0, ti]
                gt_tensor = data['gt'][0, ti]
S
simonsLiang 已提交
314 315 316
                out_img.append(tensor2img(out_tensor, (0., 1.)))
                gt_img.append(tensor2img(gt_tensor, (0., 1.)))

317
            image_numpy = tensor2img(prediction[0], min_max)
S
simonsLiang 已提交
318 319 320
            save_image(
                image_numpy,
                os.path.join(args.output_path, model_type, "{}.png".format(i)))
321

S
simonsLiang 已提交
322 323
            metric_file = os.path.join(args.output_path, model_type,
                                       "metric.txt")
324 325
            for metric in metrics.values():
                metric.update(out_img, gt_img, is_seq=True)
B
BrilliantYuKaimin 已提交
326 327 328 329 330
        elif model_type == "singan":
            predictor.run()
            prediction = output_handle.copy_to_cpu()
            prediction = paddle.to_tensor(prediction)
            image_numpy = tensor2img(prediction, min_max)
S
simonsLiang 已提交
331 332 333
            save_image(
                image_numpy,
                os.path.join(args.output_path, "singan/{}.png".format(i)))
B
BrilliantYuKaimin 已提交
334 335 336
            metric_file = os.path.join(args.output_path, "singan/metric.txt")
            for metric in metrics.values():
                metric.update(prediction, data['A'])
Y
yangshurong 已提交
337 338 339 340 341 342 343 344 345
        elif model_type == 'gfpgan':
            input_handles[0].copy_from_cpu(data['lq'].numpy())
            predictor.run()
            prediction = output_handle.copy_to_cpu()
            prediction = paddle.to_tensor(prediction)
            image_numpy = tensor2img(prediction, min_max)
            save_image(
                image_numpy,
                os.path.join(args.output_path, "gfpgan/{}.png".format(i)))
K
kongdebug 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        elif model_type == "swinir":
            lq = data[1].numpy()
            _, _, h_old, w_old = lq.shape
            window_size = 8
            tile = 128
            tile_overlap = 32
            # after feed data to model, shape of feature map is change
            h_pad = (h_old // window_size + 1) * window_size - h_old
            w_pad = (w_old // window_size + 1) * window_size - w_old
            lq = np.concatenate([lq, np.flip(lq, 2)],
                                axis=2)[:, :, :h_old + h_pad, :]
            lq = np.concatenate([lq, np.flip(lq, 3)],
                                axis=3)[:, :, :, :w_old + w_pad]
            lq = lq.astype("float32")

            b, c, h, w = lq.shape
            tile = min(tile, h, w)
            assert tile % window_size == 0, "tile size should be a multiple of window_size"
            sf = 1  # scale
            stride = tile - tile_overlap
            h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
            w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
            E = np.zeros([b, c, h * sf, w * sf], dtype=np.float32)
            W = np.zeros_like(E)

            for h_idx in h_idx_list:
                for w_idx in w_idx_list:
                    in_patch = lq[..., h_idx:h_idx + tile, w_idx:w_idx + tile]
                    input_handles[0].copy_from_cpu(in_patch)
                    predictor.run()
                    out_patch = output_handle.copy_to_cpu()
                    out_patch_mask = np.ones_like(out_patch)

                    E[..., h_idx * sf:(h_idx + tile) * sf,
                      w_idx * sf:(w_idx + tile) * sf] += out_patch
                    W[..., h_idx * sf:(h_idx + tile) * sf,
                      w_idx * sf:(w_idx + tile) * sf] += out_patch_mask

            output = np.true_divide(E, W)
            prediction = output[..., :h_old * sf, :w_old * sf]

            prediction = paddle.to_tensor(prediction)
            target = tensor2img(data[0], (0., 1.))
            prediction = tensor2img(prediction, (0., 1.))

            metric_file = os.path.join(args.output_path, model_type,
                                       "metric.txt")
            for metric in metrics.values():
                metric.update(prediction, target)

            lq = tensor2img(data[1], (0., 1.))

            sample_result = np.concatenate((lq, prediction, target), 1)
            sample = cv2.cvtColor(sample_result, cv2.COLOR_RGB2BGR)
            file_name = os.path.join(args.output_path, model_type,
                                     "{}.png".format(i))
            cv2.imwrite(file_name, sample)
C
CC 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        elif model_type == "invdn":
            noisy = data[0].numpy()
            noise_channel = 3 * 4**(cfg.model.generator.down_num) - 3
            input_handles[0].copy_from_cpu(noisy)
            input_handles[1].copy_from_cpu(
                np.random.randn(noisy.shape[0], noise_channel, noisy.shape[2],
                                noisy.shape[3]).astype(np.float32))
            predictor.run()
            output_handles = [
                predictor.get_output_handle(name)
                for name in predictor.get_output_names()
            ]
            prediction = output_handles[0].copy_to_cpu()
            prediction = paddle.to_tensor(prediction[0])
            image_numpy = tensor2img(prediction, min_max)
            gt_numpy = tensor2img(data[1], min_max)
            save_image(image_numpy,
                       os.path.join(args.output_path, "invdn/{}.png".format(i)))
            metric_file = os.path.join(args.output_path, model_type,
                                       "metric.txt")
            for metric in metrics.values():
                metric.update(image_numpy, gt_numpy)
            break
F
FutureSI 已提交
426 427 428 429 430 431 432 433 434 435
        elif model_type == 'aotgan':
            input_data = paddle.concat((data['img'], data['mask']), axis=1).numpy()
            input_handles[0].copy_from_cpu(input_data)
            predictor.run()
            prediction = output_handle.copy_to_cpu()
            prediction = paddle.to_tensor(prediction)
            image_numpy = tensor2img(prediction, min_max)
            save_image(
                image_numpy,
                os.path.join(args.output_path, "aotgan/{}.png".format(i)))
S
simonsLiang 已提交
436

437 438 439
    if metrics:
        log_file = open(metric_file, 'a')
        for metric_name, metric in metrics.items():
S
simonsLiang 已提交
440 441
            loss_string = "Metric {}: {:.4f}".format(metric_name,
                                                     metric.accumulate())
442 443
            print(loss_string, file=log_file)
        log_file.close()
444

S
simonsLiang 已提交
445

446 447
if __name__ == '__main__':
    main()