pixel_loss.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
W
wangna11BD 已提交
16
from ..generators.generater_lapstyle import calc_mean_std, mean_variance_norm
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

import paddle
import paddle.nn as nn
from .builder import CRITERIONS


@CRITERIONS.register()
class L1Loss():
    """L1 (mean absolute error, MAE) loss.

    Args:
        reduction (str): Specifies the reduction to apply to the output.
            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
        loss_weight (float): Loss weight for L1 loss. Default: 1.0.

    """
    def __init__(self, reduction='mean', loss_weight=1.0):
        # when loss weight less than zero return None
        if loss_weight <= 0:
            return None
        self._l1_loss = nn.L1Loss(reduction)
        self.loss_weight = loss_weight
        self.reduction = reduction

    def __call__(self, pred, target, **kwargs):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
            weight (Tensor, optional): of shape (N, C, H, W). Element-wise
                weights. Default: None.
        """
        return self.loss_weight * self._l1_loss(pred, target)

W
wangna11BD 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

@CRITERIONS.register()
class CharbonnierLoss():
    """Charbonnier Loss (L1).

    Args:
        eps (float): Default: 1e-12.

    """
    def __init__(self, eps=1e-12):
        self.eps = eps

    def __call__(self, pred, target, **kwargs):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
        """
        return paddle.sum(paddle.sqrt((pred - target)**2 + self.eps))

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

@CRITERIONS.register()
class MSELoss():
    """MSE (L2) loss.

    Args:
        reduction (str): Specifies the reduction to apply to the output.
            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
        loss_weight (float): Loss weight for MSE loss. Default: 1.0.

    """
    def __init__(self, reduction='mean', loss_weight=1.0):
        # when loss weight less than zero return None
        if loss_weight <= 0:
            return None
        self._l2_loss = nn.MSELoss(reduction)
        self.loss_weight = loss_weight
        self.reduction = reduction

    def __call__(self, pred, target, **kwargs):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
            weight (Tensor, optional): of shape (N, C, H, W). Element-wise
                weights. Default: None.
        """
        return self.loss_weight * self._l2_loss(pred, target)


@CRITERIONS.register()
class BCEWithLogitsLoss():
    """BCE loss.

    Args:
        reduction (str): Specifies the reduction to apply to the output.
            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
        loss_weight (float): Loss weight for MSE loss. Default: 1.0.
    """
    def __init__(self, reduction='mean', loss_weight=1.0):
        # when loss weight less than zero return None
        if loss_weight <= 0:
            return None
        self._bce_loss = nn.BCEWithLogitsLoss(reduction=reduction)
        self.loss_weight = loss_weight
        self.reduction = reduction

    def __call__(self, pred, target, **kwargs):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
            weight (Tensor, optional): of shape (N, C, H, W). Element-wise
                weights. Default: None.
        """
        return self.loss_weight * self._bce_loss(pred, target)
W
wangna11BD 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236


def calc_emd_loss(pred, target):
    """calculate emd loss.

    Args:
        pred (Tensor): of shape (N, C, H, W). Predicted tensor.
        target (Tensor): of shape (N, C, H, W). Ground truth tensor.
    """
    b, _, h, w = pred.shape
    pred = pred.reshape([b, -1, w * h])
    pred_norm = paddle.sqrt((pred**2).sum(1).reshape([b, -1, 1]))
    pred = pred.transpose([0, 2, 1])
    target_t = target.reshape([b, -1, w * h])
    target_norm = paddle.sqrt((target**2).sum(1).reshape([b, 1, -1]))
    similarity = paddle.bmm(pred, target_t) / pred_norm / target_norm
    dist = 1. - similarity
    return dist


@CRITERIONS.register()
class CalcStyleEmdLoss():
    """Calc Style Emd Loss.
    """
    def __init__(self):
        super(CalcStyleEmdLoss, self).__init__()

    def __call__(self, pred, target):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
        """
        CX_M = calc_emd_loss(pred, target)
        m1 = CX_M.min(2)
        m2 = CX_M.min(1)
        m = paddle.concat([m1.mean(), m2.mean()])
        loss_remd = paddle.max(m)
        return loss_remd


@CRITERIONS.register()
class CalcContentReltLoss():
    """Calc Content Relt Loss.
    """
    def __init__(self):
        super(CalcContentReltLoss, self).__init__()

    def __call__(self, pred, target):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
        """
        dM = 1.
        Mx = calc_emd_loss(pred, pred)
        Mx = Mx / Mx.sum(1, keepdim=True)
        My = calc_emd_loss(target, target)
        My = My / My.sum(1, keepdim=True)
        loss_content = paddle.abs(
            dM * (Mx - My)).mean() * pred.shape[2] * pred.shape[3]
        return loss_content


@CRITERIONS.register()
class CalcContentLoss():
    """Calc Content Loss.
    """
    def __init__(self):
        self.mse_loss = nn.MSELoss()

    def __call__(self, pred, target, norm=False):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
            norm(Bool): whether use mean_variance_norm for pred and target
        """
        if (norm == False):
            return self.mse_loss(pred, target)
        else:
            return self.mse_loss(mean_variance_norm(pred),
                                 mean_variance_norm(target))


@CRITERIONS.register()
class CalcStyleLoss():
    """Calc Style Loss.
    """
    def __init__(self):
        self.mse_loss = nn.MSELoss()

    def __call__(self, pred, target):
        """Forward Function.

        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
        """
        pred_mean, pred_std = calc_mean_std(pred)
        target_mean, target_std = calc_mean_std(target)
        return self.mse_loss(pred_mean, target_mean) + self.mse_loss(
            pred_std, target_std)