first_order.py 9.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


def kp2gaussian(kp, spatial_size, kp_variance):
    """
    Transform a keypoint into gaussian like representation
    """
    mean = kp['value']

    coordinate_grid = make_coordinate_grid(spatial_size, mean.dtype)
    number_of_leading_dimensions = len(mean.shape) - 1
    shape = (1, ) * number_of_leading_dimensions + tuple(coordinate_grid.shape)
    coordinate_grid = coordinate_grid.reshape([*shape])
    repeats = tuple(mean.shape[:number_of_leading_dimensions]) + (1, 1, 1)
    coordinate_grid = paddle.tile(coordinate_grid, [*repeats])

    # Preprocess kp shape
    shape = tuple(mean.shape[:number_of_leading_dimensions]) + (1, 1, 2)
    mean = mean.reshape(shape)

    mean_sub = (coordinate_grid - mean)

    out = paddle.exp(-0.5 * (mean_sub**2).sum(-1) / kp_variance)

    return out


def make_coordinate_grid(spatial_size, type):
    """
    Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
    """
    h, w = spatial_size
    x = paddle.arange(w, dtype=type)  #.type(type)
    y = paddle.arange(h, dtype=type)  #.type(type)

    x = (2 * (x / (w - 1)) - 1)
    y = (2 * (y / (h - 1)) - 1)

    yy = paddle.tile(y.reshape([-1, 1]), [1, w])
    xx = paddle.tile(x.reshape([1, -1]), [h, 1])

    meshed = paddle.concat([xx.unsqueeze(2), yy.unsqueeze(2)], 2)

    return meshed


class ResBlock2d(nn.Layer):
    """
    Res block, preserve spatial resolution.
    """
    def __init__(self, in_features, kernel_size, padding):
        super(ResBlock2d, self).__init__()
L
LielinJiang 已提交
69
        self.conv1 = nn.Conv2D(in_channels=in_features,
70 71 72
                               out_channels=in_features,
                               kernel_size=kernel_size,
                               padding=padding)
L
LielinJiang 已提交
73
        self.conv2 = nn.Conv2D(in_channels=in_features,
74 75 76
                               out_channels=in_features,
                               kernel_size=kernel_size,
                               padding=padding)
L
LielinJiang 已提交
77 78
        self.norm1 = nn.BatchNorm2D(in_features)
        self.norm2 = nn.BatchNorm2D(in_features)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = F.relu(out)
        out = self.conv2(out)
        out += x
        return out


class UpBlock2d(nn.Layer):
    """
    Upsampling block for use in decoder.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 kernel_size=3,
                 padding=1,
                 groups=1):
        super(UpBlock2d, self).__init__()

L
LielinJiang 已提交
103
        self.conv = nn.Conv2D(in_channels=in_features,
104 105 106 107
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              padding=padding,
                              groups=groups)
L
LielinJiang 已提交
108
        self.norm = nn.BatchNorm2D(out_features)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    def forward(self, x):
        out = F.interpolate(x, scale_factor=2)
        out = self.conv(out)
        out = self.norm(out)
        out = F.relu(out)
        return out


class DownBlock2d(nn.Layer):
    """
    Downsampling block for use in encoder.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 kernel_size=3,
                 padding=1,
                 groups=1):
        super(DownBlock2d, self).__init__()
L
LielinJiang 已提交
129
        self.conv = nn.Conv2D(in_channels=in_features,
130 131 132 133
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              padding=padding,
                              groups=groups)
L
LielinJiang 已提交
134 135
        self.norm = nn.BatchNorm2D(out_features)
        self.pool = nn.AvgPool2D(kernel_size=(2, 2))
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        out = self.pool(out)
        return out


class SameBlock2d(nn.Layer):
    """
    Simple block, preserve spatial resolution.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 groups=1,
                 kernel_size=3,
                 padding=1):
        super(SameBlock2d, self).__init__()
L
LielinJiang 已提交
156
        self.conv = nn.Conv2D(in_channels=in_features,
157 158 159 160
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              padding=padding,
                              groups=groups)
L
LielinJiang 已提交
161
        self.norm = nn.BatchNorm2D(out_features)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        return out


class Encoder(nn.Layer):
    """
    Hourglass Encoder
    """
    def __init__(self,
                 block_expansion,
                 in_features,
                 num_blocks=3,
                 max_features=256):
        super(Encoder, self).__init__()

        down_blocks = []
        for i in range(num_blocks):
            down_blocks.append(
                DownBlock2d(in_features if i == 0 else min(
                    max_features, block_expansion * (2**i)),
                            min(max_features, block_expansion * (2**(i + 1))),
                            kernel_size=3,
                            padding=1))
        self.down_blocks = nn.LayerList(down_blocks)

    def forward(self, x):
        outs = [x]
        for down_block in self.down_blocks:
            outs.append(down_block(outs[-1]))
        return outs


class Decoder(nn.Layer):
    """
    Hourglass Decoder
    """
    def __init__(self,
                 block_expansion,
                 in_features,
                 num_blocks=3,
                 max_features=256):
        super(Decoder, self).__init__()

        up_blocks = []

        for i in range(num_blocks)[::-1]:
            in_filters = (1 if i == num_blocks - 1 else 2) * min(
                max_features, block_expansion * (2**(i + 1)))
            out_filters = min(max_features, block_expansion * (2**i))
            up_blocks.append(
                UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))

        self.up_blocks = nn.LayerList(up_blocks)
        self.out_filters = block_expansion + in_features

    def forward(self, x):
        out = x.pop()
        for up_block in self.up_blocks:
            out = up_block(out)
            skip = x.pop()
            out = paddle.concat([out, skip], axis=1)
        return out


class Hourglass(nn.Layer):
    """
    Hourglass architecture.
    """
    def __init__(self,
                 block_expansion,
                 in_features,
                 num_blocks=3,
                 max_features=256):
        super(Hourglass, self).__init__()
        self.encoder = Encoder(block_expansion, in_features, num_blocks,
                               max_features)
        self.decoder = Decoder(block_expansion, in_features, num_blocks,
                               max_features)
        self.out_filters = self.decoder.out_filters

    def forward(self, x):
        return self.decoder(self.encoder(x))


class AntiAliasInterpolation2d(nn.Layer):
    """
    Band-limited downsampling, for better preservation of the input signal.
    """
    def __init__(self, channels, scale):
        super(AntiAliasInterpolation2d, self).__init__()
        sigma = (1 / scale - 1) / 2
        kernel_size = 2 * round(sigma * 4) + 1
        self.ka = kernel_size // 2
        self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka

        kernel_size = [kernel_size, kernel_size]
        sigma = [sigma, sigma]
        # The gaussian kernel is the product of the
        # gaussian function of each dimension.
        kernel = 1
        meshgrids = paddle.meshgrid(
            [paddle.arange(size, dtype='float32') for size in kernel_size])
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= paddle.exp(-(mgrid - mean)**2 / (2 * std**2))

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / paddle.sum(kernel)
        # Reshape to depthwise convolutional weight
        kernel = kernel.reshape([1, 1, *kernel.shape])
        kernel = paddle.tile(kernel, [channels, *[1] * (kernel.dim() - 1)])

        self.register_buffer('weight', kernel)
        self.groups = channels
        self.scale = scale

    def forward(self, input):
        if self.scale == 1.0:
            return input

        out = F.pad(input, [self.ka, self.kb, self.ka, self.kb])
        out = F.conv2d(out, weight=self.weight, groups=self.groups)
        out = F.interpolate(out, scale_factor=[self.scale, self.scale])

        return out