dense_motion.py 6.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from .first_order import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian


class DenseMotionNetwork(nn.Layer):
    """
    Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
    """
    def __init__(self,
                 block_expansion,
                 num_blocks,
                 max_features,
                 num_kp,
                 num_channels,
                 estimate_occlusion_map=False,
                 scale_factor=1,
                 kp_variance=0.01):
        super(DenseMotionNetwork, self).__init__()
        self.hourglass = Hourglass(block_expansion=block_expansion,
                                   in_features=(num_kp + 1) *
                                   (num_channels + 1),
                                   max_features=max_features,
                                   num_blocks=num_blocks)

L
LielinJiang 已提交
42
        self.mask = nn.Conv2D(self.hourglass.out_filters,
43 44 45 46 47
                              num_kp + 1,
                              kernel_size=(7, 7),
                              padding=(3, 3))

        if estimate_occlusion_map:
L
LielinJiang 已提交
48
            self.occlusion = nn.Conv2D(self.hourglass.out_filters,
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                                       1,
                                       kernel_size=(7, 7),
                                       padding=(3, 3))
        else:
            self.occlusion = None

        self.num_kp = num_kp
        self.scale_factor = scale_factor
        self.kp_variance = kp_variance

        if self.scale_factor != 1:
            self.down = AntiAliasInterpolation2d(num_channels,
                                                 self.scale_factor)

    def create_heatmap_representations(self, source_image, kp_driving,
                                       kp_source):
        """
        Eq 6. in the paper H_k(z)
        """
        spatial_size = source_image.shape[2:]
        gaussian_driving = kp2gaussian(kp_driving,
                                       spatial_size=spatial_size,
                                       kp_variance=self.kp_variance)
        gaussian_source = kp2gaussian(kp_source,
                                      spatial_size=spatial_size,
                                      kp_variance=self.kp_variance)
        heatmap = gaussian_driving - gaussian_source

        #adding background feature
        zeros = paddle.zeros(
            [heatmap.shape[0], 1, spatial_size[0], spatial_size[1]],
            heatmap.dtype)  #.type(heatmap.type())
        heatmap = paddle.concat([zeros, heatmap], axis=1)
        heatmap = heatmap.unsqueeze(2)
        return heatmap

    def create_sparse_motions(self, source_image, kp_driving, kp_source):
        """
        Eq 4. in the paper T_{s<-d}(z)
        """
        bs, _, h, w = source_image.shape
        identity_grid = make_coordinate_grid((h, w),
                                             type=kp_source['value'].dtype)
        identity_grid = identity_grid.reshape([1, 1, h, w, 2])
        coordinate_grid = identity_grid - kp_driving['value'].reshape(
            [bs, self.num_kp, 1, 1, 2])
        if 'jacobian' in kp_driving:
            jacobian = paddle.matmul(kp_source['jacobian'],
                                     paddle.inverse(kp_driving['jacobian']))
            jacobian = jacobian.unsqueeze(-3).unsqueeze(-3)
            jacobian = paddle.tile(jacobian, [1, 1, h, w, 1, 1])
            coordinate_grid = paddle.matmul(jacobian,
                                            coordinate_grid.unsqueeze(-1))
            coordinate_grid = coordinate_grid.squeeze(-1)

        driving_to_source = coordinate_grid + kp_source['value'].reshape(
            [bs, self.num_kp, 1, 1, 2])

        #adding background feature
        identity_grid = paddle.tile(identity_grid, (bs, 1, 1, 1, 1))
        sparse_motions = paddle.concat([identity_grid, driving_to_source],
                                       axis=1)
        return sparse_motions

    def create_deformed_source_image(self, source_image, sparse_motions):
        """
        Eq 7. in the paper \hat{T}_{s<-d}(z)
        """
        bs, _, h, w = source_image.shape
        source_repeat = paddle.tile(
            source_image.unsqueeze(1).unsqueeze(1),
            [1, self.num_kp + 1, 1, 1, 1, 1
             ])  #.repeat(1, self.num_kp + 1, 1, 1, 1, 1)
        source_repeat = source_repeat.reshape(
            [bs * (self.num_kp + 1), -1, h, w])
        sparse_motions = sparse_motions.reshape(
            (bs * (self.num_kp + 1), h, w, -1))
        sparse_deformed = F.grid_sample(source_repeat,
                                        sparse_motions,
                                        align_corners=False)
        sparse_deformed = sparse_deformed.reshape(
            (bs, self.num_kp + 1, -1, h, w))
        return sparse_deformed

    def forward(self, source_image, kp_driving, kp_source):
        if self.scale_factor != 1:
            source_image = self.down(source_image)

        bs, _, h, w = source_image.shape

        out_dict = dict()
        heatmap_representation = self.create_heatmap_representations(
            source_image, kp_driving, kp_source)
        sparse_motion = self.create_sparse_motions(source_image, kp_driving,
                                                   kp_source)
        deformed_source = self.create_deformed_source_image(
            source_image, sparse_motion)
        out_dict['sparse_deformed'] = deformed_source

        input = paddle.concat([heatmap_representation, deformed_source], axis=2)
        input = input.reshape([bs, -1, h, w])

        prediction = self.hourglass(input)

        mask = self.mask(prediction)
        mask = F.softmax(mask, axis=1)
        out_dict['mask'] = mask
        mask = mask.unsqueeze(2)
        sparse_motion = sparse_motion.transpose([0, 1, 4, 2, 3])
        deformation = (sparse_motion * mask).sum(axis=1)
        deformation = deformation.transpose([0, 2, 3, 1])

        out_dict['deformation'] = deformation

        # Sec. 3.2 in the paper
        if self.occlusion:
            occlusion_map = F.sigmoid(self.occlusion(prediction))
            out_dict['occlusion_map'] = occlusion_map

        return out_dict