resnet_backbone.py 6.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16 17
import paddle
import paddle.nn as nn

L
fix nan  
LielinJiang 已提交
18 19 20
__all__ = [
    'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
]
L
LielinJiang 已提交
21 22 23 24


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
L
LielinJiang 已提交
25
    return nn.Conv2D(in_planes,
L
fix nan  
LielinJiang 已提交
26 27 28 29 30
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias_attr=False)
L
LielinJiang 已提交
31 32


L
fix nan  
LielinJiang 已提交
33
class BasicBlock(nn.Layer):
L
LielinJiang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm(planes)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


L
fix nan  
LielinJiang 已提交
65
class Bottleneck(nn.Layer):
L
LielinJiang 已提交
66 67 68 69
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
L
LielinJiang 已提交
70
        self.conv1 = nn.Conv2D(inplanes, planes, kernel_size=1, bias_attr=False)
L
LielinJiang 已提交
71
        self.bn1 = nn.BatchNorm(planes)
L
LielinJiang 已提交
72
        self.conv2 = nn.Conv2D(planes,
L
fix nan  
LielinJiang 已提交
73 74 75 76 77
                               planes,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias_attr=False)
L
LielinJiang 已提交
78
        self.bn2 = nn.BatchNorm(planes)
L
LielinJiang 已提交
79
        self.conv3 = nn.Conv2D(planes,
L
fix nan  
LielinJiang 已提交
80 81 82
                               planes * 4,
                               kernel_size=1,
                               bias_attr=False)
L
LielinJiang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        self.bn3 = nn.BatchNorm(planes * 4)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


L
fix nan  
LielinJiang 已提交
110
class ResNet(nn.Layer):
L
LielinJiang 已提交
111 112 113
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
L
LielinJiang 已提交
114
        self.conv1 = nn.Conv2D(3,
L
fix nan  
LielinJiang 已提交
115 116 117 118
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
L
LielinJiang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                               bias_attr=False)
        self.bn1 = nn.BatchNorm(64)
        self.relu = nn.ReLU()
        self.maxpool = nn.Pool2D(pool_size=3, pool_stride=2, pool_padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.Pool2D(7, pool_stride=1, pool_type='avg')
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
L
LielinJiang 已提交
134
                nn.Conv2D(self.inplanes,
L
fix nan  
LielinJiang 已提交
135 136 137 138
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias_attr=False),
L
LielinJiang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                nn.BatchNorm(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = paddle.reshape(x, (x.shape[0], -1))
        x = self.fc(x)

        return x


def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    return model


def resnet34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    return model


def resnet50(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    return model


def resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    return model


def resnet152(pretrained=False, **kwargs):
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    return model