generator_starganv2.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

import paddle
from paddle import nn
import paddle.nn.functional as F

from .builder import GENERATORS
import numpy as np
import math

from ppgan.modules.wing import CoordConvTh, ConvBlock, HourGlass, preprocess


class AvgPool2D(nn.Layer):
    """
    AvgPool2D 
    Peplace avg_pool2d because paddle.grad will cause avg_pool2d to report an error when training.
    In the future Paddle framework will supports avg_pool2d and remove this class.
    """
    def __init__(self):
        super(AvgPool2D, self).__init__()
        self.filter = paddle.to_tensor([[1, 1],
                                    [1, 1]], dtype='float32')

    def forward(self, x):
        filter = self.filter.unsqueeze(0).unsqueeze(1).tile([x.shape[1], 1, 1, 1])
        return F.conv2d(x, filter, stride=2, padding=0, groups=x.shape[1]) / 4


class ResBlk(nn.Layer):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample=False):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample = downsample
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = nn.Conv2D(dim_in, dim_in, 3, 1, 1)
        self.conv2 = nn.Conv2D(dim_in, dim_out, 3, 1, 1)
        if self.normalize:
            self.norm1 = nn.InstanceNorm2D(dim_in, weight_attr=True, bias_attr=True)
            self.norm2 = nn.InstanceNorm2D(dim_in, weight_attr=True, bias_attr=True)
        if self.learned_sc:
            self.conv1x1 = nn.Conv2D(dim_in, dim_out, 1, 1, 0, bias_attr=False)

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        if self.downsample:
            x = AvgPool2D()(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = self.conv1(x)
        if self.downsample:
            x = AvgPool2D()(x)
        if self.normalize:
            x = self.norm2(x)
        x = self.actv(x)
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance


class AdaIN(nn.Layer):
    def __init__(self, style_dim, num_features):
        super().__init__()
        self.norm = nn.InstanceNorm2D(num_features, weight_attr=False, bias_attr=False)
        self.fc = nn.Linear(style_dim, num_features*2)

    def forward(self, x, s):
        h = self.fc(s)
        # h = h.view(h.size(0), h.size(1), 1, 1)
        h = paddle.reshape(h, (h.shape[0], h.shape[1], 1, 1))
        gamma, beta = paddle.chunk(h, chunks=2, axis=1)
        return (1 + gamma) * self.norm(x) + beta


class AdainResBlk(nn.Layer):
    def __init__(self, dim_in, dim_out, style_dim=64, w_hpf=0,
                 actv=nn.LeakyReLU(0.2), upsample=False):
        super().__init__()
        self.w_hpf = w_hpf
        self.actv = actv
        self.upsample = upsample
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out, style_dim)

    def _build_weights(self, dim_in, dim_out, style_dim=64):
        self.conv1 = nn.Conv2D(dim_in, dim_out, 3, 1, 1)
        self.conv2 = nn.Conv2D(dim_out, dim_out, 3, 1, 1)
        self.norm1 = AdaIN(style_dim, dim_in)
        self.norm2 = AdaIN(style_dim, dim_out)
        if self.learned_sc:
            self.conv1x1 = nn.Conv2D(dim_in, dim_out, 1, 1, 0, bias_attr=False)

    def _shortcut(self, x):
        if self.upsample:
            x = F.interpolate(x, scale_factor=2, mode='nearest')
        if self.learned_sc:
            x = self.conv1x1(x)
        return x

    def _residual(self, x, s):
        x = self.norm1(x, s)
        x = self.actv(x)
        if self.upsample:
            x = F.interpolate(x, scale_factor=2, mode='nearest')
        x = self.conv1(x)
        x = self.norm2(x, s)
        x = self.actv(x)
        x = self.conv2(x)
        return x

    def forward(self, x, s):
        out = self._residual(x, s)
        if self.w_hpf == 0:
            out = (out + self._shortcut(x)) / math.sqrt(2)
        return out


class HighPass(nn.Layer):
    def __init__(self, w_hpf):
        super(HighPass, self).__init__()
        self.filter = paddle.to_tensor([[-1, -1, -1],
                                    [-1, 8., -1],
                                    [-1, -1, -1]]) / w_hpf

    def forward(self, x):
        # filter = self.filter.unsqueeze(0).unsqueeze(1).repeat(x.size(1), 1, 1, 1)
        filter = self.filter.unsqueeze(0).unsqueeze(1).tile([x.shape[1], 1, 1, 1])
        return F.conv2d(x, filter, padding=1, groups=x.shape[1])


@GENERATORS.register()
class StarGANv2Generator(nn.Layer):
    def __init__(self, img_size=256, style_dim=64, max_conv_dim=512, w_hpf=1):
        super().__init__()
        dim_in = 2**14 // img_size
        self.img_size = img_size
        self.from_rgb = nn.Conv2D(3, dim_in, 3, 1, 1)
        self.encode = nn.LayerList()
        self.decode = nn.LayerList()
        self.to_rgb = nn.Sequential(
            nn.InstanceNorm2D(dim_in, weight_attr=True, bias_attr=True),
            nn.LeakyReLU(0.2),
            nn.Conv2D(dim_in, 3, 1, 1, 0))

        # down/up-sampling blocks
        repeat_num = int(np.log2(img_size)) - 4
        if w_hpf > 0:
            repeat_num += 1
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            self.encode.append(
                ResBlk(dim_in, dim_out, normalize=True, downsample=True))
            if len(self.decode) == 0:
                self.decode.append(AdainResBlk(dim_out, dim_in, style_dim,
                                w_hpf=w_hpf, upsample=True))
            else:
                self.decode.insert(
                    0, AdainResBlk(dim_out, dim_in, style_dim,
                                w_hpf=w_hpf, upsample=True))  # stack-like
            dim_in = dim_out

        # bottleneck blocks
        for _ in range(2):
            self.encode.append(
                ResBlk(dim_out, dim_out, normalize=True))
            self.decode.insert(
                0, AdainResBlk(dim_out, dim_out, style_dim, w_hpf=w_hpf))

        if w_hpf > 0:
            self.hpf = HighPass(w_hpf)

    def forward(self, x, s, masks=None):
        x = self.from_rgb(x)
        cache = {}
        for block in self.encode:
            if (masks is not None) and (x.shape[2] in [32, 64, 128]):
                cache[x.shape[2]] = x
            x = block(x)
        for block in self.decode:
            x = block(x, s)
            if (masks is not None) and (x.shape[2] in [32, 64, 128]):
                mask = masks[0] if x.shape[2] in [32] else masks[1]
                mask = F.interpolate(mask, size=[x.shape[2], x.shape[2]], mode='bilinear')
                x = x + self.hpf(mask * cache[x.shape[2]])
        return self.to_rgb(x)


@GENERATORS.register()
class StarGANv2Mapping(nn.Layer):
    def __init__(self, latent_dim=16, style_dim=64, num_domains=2):
        super().__init__()
        layers = []
        layers += [nn.Linear(latent_dim, 512)]
        layers += [nn.ReLU()]
        for _ in range(3):
            layers += [nn.Linear(512, 512)]
            layers += [nn.ReLU()]
        self.shared = nn.Sequential(*layers)

        self.unshared = nn.LayerList()
        for _ in range(num_domains):
            self.unshared.append(nn.Sequential(nn.Linear(512, 512),
                                            nn.ReLU(),
                                            nn.Linear(512, 512),
                                            nn.ReLU(),
                                            nn.Linear(512, 512),
                                            nn.ReLU(),
                                            nn.Linear(512, style_dim)))

    def forward(self, z, y):
        h = self.shared(z)
        out = []
        for layer in self.unshared:
            out += [layer(h)]
        out = paddle.stack(out, axis=1)  # (batch, num_domains, style_dim)
        idx = paddle.to_tensor(np.array(range(y.shape[0]))).astype('int')
        s = []
        for i in range(idx.shape[0]):
            s += [out[idx[i].numpy().astype(np.int).tolist()[0], y[i].numpy().astype(np.int).tolist()[0]]]
        s = paddle.stack(s)
        s = paddle.reshape(s, (s.shape[0], -1))
        return s


@GENERATORS.register()
class StarGANv2Style(nn.Layer):
    def __init__(self, img_size=256, style_dim=64, num_domains=2, max_conv_dim=512):
        super().__init__()
        dim_in = 2**14 // img_size
        blocks = []
        blocks += [nn.Conv2D(3, dim_in, 3, 1, 1)]

        repeat_num = int(np.log2(img_size)) - 2
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, downsample=True)]
            dim_in = dim_out

        blocks += [nn.LeakyReLU(0.2)]
        blocks += [nn.Conv2D(dim_out, dim_out, 4, 1, 0)]
        blocks += [nn.LeakyReLU(0.2)]
        self.shared = nn.Sequential(*blocks)

        self.unshared = nn.LayerList()
        for _ in range(num_domains):
            self.unshared.append(nn.Linear(dim_out, style_dim))

    def forward(self, x, y):
        h = self.shared(x)
        h = paddle.reshape(h, (h.shape[0], -1))
        out = []
        for layer in self.unshared:
            out += [layer(h)]
        out = paddle.stack(out, axis=1)  # (batch, num_domains, style_dim)
        idx = paddle.to_tensor(np.array(range(y.shape[0]))).astype('int')
        s = []
        for i in range(idx.shape[0]):
            s += [out[idx[i].numpy().astype(np.int).tolist()[0], y[i].numpy().astype(np.int).tolist()[0]]]
        s = paddle.stack(s)
        s = paddle.reshape(s, (s.shape[0], -1))
        return s


@GENERATORS.register()
class FAN(nn.Layer):
    def __init__(self, num_modules=1, end_relu=False, num_landmarks=98, fname_pretrained=None):
        super(FAN, self).__init__()
        self.num_modules = num_modules
        self.end_relu = end_relu

        # Base part
        self.conv1 = CoordConvTh(256, 256, True, False,
                                 in_channels=3, out_channels=64,
                                 kernel_size=7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2D(64)
        self.conv2 = ConvBlock(64, 128)
        self.conv3 = ConvBlock(128, 128)
        self.conv4 = ConvBlock(128, 256)

        # Stacking part
        self.add_sublayer('m0', HourGlass(1, 4, 256, first_one=True))
        self.add_sublayer('top_m_0', ConvBlock(256, 256))
        self.add_sublayer('conv_last0', nn.Conv2D(256, 256, 1, 1, 0))
        self.add_sublayer('bn_end0', nn.BatchNorm2D(256))
        self.add_sublayer('l0', nn.Conv2D(256, num_landmarks+1, 1, 1, 0))

        if fname_pretrained is not None:
            self.load_pretrained_weights(fname_pretrained)

    def load_pretrained_weights(self, fname):
        import pickle
        import six

        with open(fname, 'rb') as f:
            checkpoint = pickle.load(f) if six.PY2 else pickle.load(
                f, encoding='latin1')
        
        model_weights = self.state_dict()
        model_weights.update({k: v for k, v in checkpoint['state_dict'].items()
                              if k in model_weights})
        self.set_state_dict(model_weights)

    def forward(self, x):
        x, _ = self.conv1(x)
        x = F.relu(self.bn1(x), True)
        x = F.avg_pool2d(self.conv2(x), 2, stride=2)
        x = self.conv3(x)
        x = self.conv4(x)

        outputs = []
        boundary_channels = []
        tmp_out = None
        ll, boundary_channel = self._sub_layers['m0'](x, tmp_out)
        ll = self._sub_layers['top_m_0'](ll)
        ll = F.relu(self._sub_layers['bn_end0']
                    (self._sub_layers['conv_last0'](ll)), True)

        # Predict heatmaps
        tmp_out = self._sub_layers['l0'](ll)
        if self.end_relu:
            tmp_out = F.relu(tmp_out)  # HACK: Added relu
        outputs.append(tmp_out)
        boundary_channels.append(boundary_channel)
        return outputs, boundary_channels

    @paddle.no_grad()
    def get_heatmap(self, x, b_preprocess=True):
        ''' outputs 0-1 normalized heatmap '''
        x = F.interpolate(x, size=[256, 256], mode='bilinear')
        x_01 = x*0.5 + 0.5
        outputs, _ = self(x_01)
        heatmaps = outputs[-1][:, :-1, :, :]
        scale_factor = x.shape[2] // heatmaps.shape[2]
        if b_preprocess:
            heatmaps = F.interpolate(heatmaps, scale_factor=scale_factor,
                                     mode='bilinear', align_corners=True)
            heatmaps = preprocess(heatmaps)
        return heatmaps