firstorder_dataset.py 10.5 KB
Newer Older
F
FNRE 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# code was heavily based on https://github.com/AliaksandrSiarohin/first-order-model

import logging
from multiprocessing import Pool
from pathlib import Path

import numpy as np
import tqdm
from imageio import imread, mimread, imwrite
import cv2
from paddle.io import Dataset
from .builder import DATASETS
from .preprocess.builder import build_transforms
import glob, os

POOL_SIZE = 64  # If POOL_SIZE>0 use multiprocessing to extract frames from gif file


@DATASETS.register()
class FirstOrderDataset(Dataset):
    def __init__(self, **cfg):
        """Initialize FirstOrder dataset class.

        Args:
            dataroot (str): Directory of dataset.
            phase (str): train or test
            num_repeats (int): Number for datasets to repeat
            time_flip (bool): whether to exchange the driving image and source image randomly
            batch_size (int): dataset batch size
            id_sampling (bool): whether to sample person's id
            frame_shape (list): image shape
            create_frames_folder (bool): if the format of your input datasets is '.mp4', \
                                         you can choose whether to save it with images
            num_workers (int): dataset
        """
        super(FirstOrderDataset, self).__init__()
        self.cfg = cfg
        self.frameDataset = FramesDataset(self.cfg)

        # create frames folder before 'DatasetRepeater'
        if self.cfg['create_frames_folder']:
            file_idx_set = [
                idx for idx, path in enumerate(self.frameDataset.videos)
                if not self.frameDataset.root_dir.joinpath(path).is_dir()
            ]
            file_idx_set = list(file_idx_set)
            if len(file_idx_set) != 0:
                if POOL_SIZE == 0:
                    for idx in tqdm.tqdm(file_idx_set,
                                         desc='Extracting frames'):
                        _ = self.frameDataset[idx]
                else:
                    # multiprocessing
                    bar = tqdm.tqdm(total=len(file_idx_set),
                                    desc='Extracting frames')
                    with Pool(POOL_SIZE) as pl:
                        _p = 0
                        while _p <= len(file_idx_set) - 1:
                            _ = pl.map(self.frameDataset.__getitem__,
                                       file_idx_set[_p:_p + POOL_SIZE * 2])
                            _p = _p + POOL_SIZE * 2
                            bar.update(POOL_SIZE * 2)
                    bar.close()

                # rewrite video path
                self.frameDataset.videos = [
                    i.with_suffix('') for i in self.frameDataset.videos
                ]

        if self.cfg['phase'] == 'train':
            self.outDataset = DatasetRepeater(self.frameDataset,
                                              self.cfg['num_repeats'])
        else:
            self.outDataset = self.frameDataset

    def __len__(self):
        return len(self.outDataset)

    def __getitem__(self, idx):
        return self.outDataset[idx]


def read_video(name: Path, frame_shape=tuple([256, 256, 3]), saveto='folder'):
    """
    Read video which can be:
      - an image of concatenated frames
      - '.mp4' and'.gif'
      - folder with videos
    """
    if name.is_dir():
        frames = sorted(name.iterdir(),
                        key=lambda x: int(x.with_suffix('').name))
F
FNRE 已提交
107 108 109
        video_array = np.array([imread(path) for path in frames],
                               dtype='float32')
        return video_array
F
FNRE 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    elif name.suffix.lower() in ['.gif', '.mp4', '.mov']:
        try:
            video = mimread(name, memtest=False)
        except Exception as err:
            logging.error('DataLoading File:%s Msg:%s' % (str(name), str(err)))
            return None

        # convert to 3-channel image
        if video[0].shape[-1] == 4:
            video = [i[..., :3] for i in video]
        elif video[0].shape[-1] == 1:
            video = [np.tile(i, (1, 1, 3)) for i in video]
        elif len(video[0].shape) == 2:
            video = [np.tile(i[..., np.newaxis], (1, 1, 3)) for i in video]
        video_array = np.asarray(video)
        video_array_reshape = []
        for idx, img in enumerate(video_array):
            img = cv2.resize(img, (frame_shape[0], frame_shape[1]))
            video_array_reshape.append(img.astype(np.uint8))
        video_array_reshape = np.asarray(video_array_reshape)

        if saveto == 'folder':
            sub_dir = name.with_suffix('')
            try:
                sub_dir.mkdir()
            except FileExistsError:
                pass
            for idx, img in enumerate(video_array_reshape):
                cv2.imwrite(sub_dir.joinpath('%i.png' % idx), img)
            name.unlink()
F
FNRE 已提交
140
        return video_array_reshape
F
FNRE 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    else:
        raise Exception("Unknown dataset file extensions  %s" % name)


class FramesDataset(Dataset):
    """
    Dataset of videos, each video can be represented as:
      - an image of concatenated frames
      - '.mp4' or '.gif'
      - folder with all frames
    FramesDataset[i]: obtain sample from i-th video in self.videos
    """
    def __init__(self, cfg):
        self.root_dir = Path(cfg['dataroot'])
        self.videos = None
        self.frame_shape = tuple(cfg['frame_shape'])
        self.id_sampling = cfg['id_sampling']
        self.time_flip = cfg['time_flip']
        self.is_train = True if cfg['phase'] == 'train' else False
        self.pairs_list = cfg.setdefault('pairs_list', None)
        self.create_frames_folder = cfg['create_frames_folder']
        self.transform = None
        random_seed = 0
        assert self.root_dir.joinpath('train').exists()
        assert self.root_dir.joinpath('test').exists()
        logging.info("Use predefined train-test split.")
        if self.id_sampling:
            train_videos = {
                video.name.split('#')[0]
                for video in self.root_dir.joinpath('train').iterdir()
            }
            train_videos = list(train_videos)
        else:
            train_videos = list(self.root_dir.joinpath('train').iterdir())
        test_videos = list(self.root_dir.joinpath('test').iterdir())
        self.root_dir = self.root_dir.joinpath(
            'train' if self.is_train else 'test')

        if self.is_train:
            self.videos = train_videos
            self.transform = build_transforms(cfg['transforms'])
        else:
            self.videos = test_videos
            self.transform = None

    def __len__(self):
        return len(self.videos)

    def __getitem__(self, idx):
        if self.is_train and self.id_sampling:
            name = self.videos[idx]
            path = Path(
                np.random.choice(
                    glob.glob(os.path.join(self.root_dir, name + '*.mp4'))))
        else:
            path = self.videos[idx]
        video_name = path.name
        if self.is_train and path.is_dir():
            frames = sorted(path.iterdir(),
                            key=lambda x: int(x.with_suffix('').name))
            num_frames = len(frames)
            frame_idx = np.sort(
                np.random.choice(num_frames, replace=True, size=2))
            video_array = [imread(str(frames[idx])) for idx in frame_idx]
        else:
            if self.create_frames_folder:
                video_array = read_video(path,
                                         frame_shape=self.frame_shape,
                                         saveto='folder')
                self.videos[idx] = path.with_suffix(
                    '')  # rename /xx/xx/xx.gif -> /xx/xx/xx
            else:
                video_array = read_video(path,
                                         frame_shape=self.frame_shape,
                                         saveto=None)
            num_frames = len(video_array)
            frame_idx = np.sort(
                np.random.choice(
                    num_frames, replace=True,
                    size=2)) if self.is_train else range(num_frames)
            video_array = [video_array[i] for i in frame_idx]

        # convert to 3-channel image
        if video_array[0].shape[-1] == 4:
            video_array = [i[..., :3] for i in video_array]
        elif video_array[0].shape[-1] == 1:
            video_array = [np.tile(i, (1, 1, 3)) for i in video_array]
        elif len(video_array[0].shape) == 2:
            video_array = [
                np.tile(i[..., np.newaxis], (1, 1, 3)) for i in video_array
            ]
        out = {}

        if self.is_train:
            if self.transform is not None:  #modify
                t = self.transform(tuple(video_array))
                out['driving'] = t[0].transpose(2, 0, 1).astype(
                    np.float32) / 255.0
                out['source'] = t[1].transpose(2, 0, 1).astype(
                    np.float32) / 255.0
            else:
                source = np.array(video_array[0],
                                  dtype='float32') / 255.0  # shape is [H, W, C]
                driving = np.array(
                    video_array[1],
                    dtype='float32') / 255.0  # shape is [H, W, C]
                out['driving'] = driving.transpose(2, 0, 1)
                out['source'] = source.transpose(2, 0, 1)
            if self.time_flip and np.random.rand() < 0.5:  #modify
                buf = out['driving']
                out['driving'] = out['source']
                out['source'] = buf
        else:
            video = np.stack(video_array, axis=0) / 255.0
            out['video'] = video.transpose(3, 0, 1, 2)
        out['name'] = video_name
        return out

    def get_sample(self, idx):
        return self.__getitem__(idx)


class DatasetRepeater(Dataset):
    """
    Pass several times over the same dataset for better i/o performance
    """
    def __init__(self, dataset, num_repeats=100):
        self.dataset = dataset
        self.num_repeats = num_repeats

    def __len__(self):
        return self.num_repeats * self.dataset.__len__()

    def __getitem__(self, idx):
        return self.dataset[idx % self.dataset.__len__()]