first_order.py 14.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
FNRE 已提交
15 16
# code was heavily based on https://github.com/AliaksandrSiarohin/first-order-model

17 18 19 20 21
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


F
FNRE 已提交
22 23 24 25 26
def SyncBatchNorm(*args, **kwargs):
    """In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm instead"""
    if paddle.get_device() == 'cpu':
        return nn.BatchNorm(*args, **kwargs)
    else:
L
lzzyzlbb 已提交
27
        return nn.BatchNorm(*args, **kwargs)
F
FNRE 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


class ImagePyramide(nn.Layer):
    """
    Create image pyramide for computing pyramide perceptual loss. See Sec 3.3
    """
    def __init__(self, scales, num_channels):
        super(ImagePyramide, self).__init__()
        self.downs = paddle.nn.LayerList()
        self.name_list = []
        for scale in scales:
            self.downs.add_sublayer(
                str(scale).replace('.', '-'),
                AntiAliasInterpolation2d(num_channels, scale))
            self.name_list.append(str(scale).replace('.', '-'))

    def forward(self, x):
        out_dict = {}
        for scale, down_module in zip(self.name_list, self.downs):
            out_dict['prediction_' +
                     str(scale).replace('-', '.')] = down_module(x)
        return out_dict


def detach_kp(kp):
    return {key: value.detach() for key, value in kp.items()}


56 57 58 59 60 61 62 63 64 65
def kp2gaussian(kp, spatial_size, kp_variance):
    """
    Transform a keypoint into gaussian like representation
    """
    mean = kp['value']

    coordinate_grid = make_coordinate_grid(spatial_size, mean.dtype)
    number_of_leading_dimensions = len(mean.shape) - 1
    shape = (1, ) * number_of_leading_dimensions + tuple(coordinate_grid.shape)
    repeats = tuple(mean.shape[:number_of_leading_dimensions]) + (1, 1, 1)
F
FNRE 已提交
66 67
    coordinate_grid = coordinate_grid.reshape(shape)
    coordinate_grid = coordinate_grid.tile(repeats)
68 69 70 71 72 73 74 75 76 77 78 79

    # Preprocess kp shape
    shape = tuple(mean.shape[:number_of_leading_dimensions]) + (1, 1, 2)
    mean = mean.reshape(shape)

    mean_sub = (coordinate_grid - mean)

    out = paddle.exp(-0.5 * (mean_sub**2).sum(-1) / kp_variance)

    return out


F
FNRE 已提交
80
def make_coordinate_grid(spatial_size, type='float32'):
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    """
    Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
    """
    h, w = spatial_size
    x = paddle.arange(w, dtype=type)  #.type(type)
    y = paddle.arange(h, dtype=type)  #.type(type)

    x = (2 * (x / (w - 1)) - 1)
    y = (2 * (y / (h - 1)) - 1)

    yy = paddle.tile(y.reshape([-1, 1]), [1, w])
    xx = paddle.tile(x.reshape([1, -1]), [h, 1])

    meshed = paddle.concat([xx.unsqueeze(2), yy.unsqueeze(2)], 2)

    return meshed


class ResBlock2d(nn.Layer):
    """
    Res block, preserve spatial resolution.
    """
    def __init__(self, in_features, kernel_size, padding):
        super(ResBlock2d, self).__init__()
L
LielinJiang 已提交
105
        self.conv1 = nn.Conv2D(in_channels=in_features,
106 107 108
                               out_channels=in_features,
                               kernel_size=kernel_size,
                               padding=padding)
L
LielinJiang 已提交
109
        self.conv2 = nn.Conv2D(in_channels=in_features,
110 111 112
                               out_channels=in_features,
                               kernel_size=kernel_size,
                               padding=padding)
F
FNRE 已提交
113 114
        self.norm1 = SyncBatchNorm(in_features)
        self.norm2 = SyncBatchNorm(in_features)
115 116 117 118 119 120 121 122 123 124 125

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = F.relu(out)
        out = self.conv2(out)
        out += x
        return out

L
lzzyzlbb 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class MobileResBlock2d(nn.Layer):
    """
    Res block, preserve spatial resolution.
    """

    def __init__(self, in_features, kernel_size, padding):
        super(MobileResBlock2d, self).__init__()
        out_features = in_features * 2
        self.conv_pw = nn.Conv2D(in_channels=in_features, out_channels=out_features, kernel_size=1,
                               padding=0, bias_attr=False)
        self.conv_dw = nn.Conv2D(in_channels=out_features, out_channels=out_features, kernel_size=kernel_size,
                               padding=padding, groups=out_features, bias_attr=False)
        self.conv_pw_linear = nn.Conv2D(in_channels=out_features, out_channels=in_features, kernel_size=1,
                              padding=0, bias_attr=False)
        self.norm1 = SyncBatchNorm(in_features)
        self.norm_pw = SyncBatchNorm(out_features)
        self.norm_dw = SyncBatchNorm(out_features)
        self.norm_pw_linear = SyncBatchNorm(in_features)

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv_pw(out)
        out = self.norm_pw(out)

        out = self.conv_dw(out)
        out = self.norm_dw(out)
        out = F.relu(out)

        out = self.conv_pw_linear(out)
        out = self.norm_pw_linear(out)
        out += x
        return out

160 161 162 163 164 165 166 167 168 169 170 171 172

class UpBlock2d(nn.Layer):
    """
    Upsampling block for use in decoder.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 kernel_size=3,
                 padding=1,
                 groups=1):
        super(UpBlock2d, self).__init__()

L
LielinJiang 已提交
173
        self.conv = nn.Conv2D(in_channels=in_features,
174 175 176 177
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              padding=padding,
                              groups=groups)
F
FNRE 已提交
178
        self.norm = SyncBatchNorm(out_features)
179 180 181 182 183 184 185 186

    def forward(self, x):
        out = F.interpolate(x, scale_factor=2)
        out = self.conv(out)
        out = self.norm(out)
        out = F.relu(out)
        return out

L
lzzyzlbb 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class MobileUpBlock2d(nn.Layer):
    """
    Upsampling block for use in decoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(MobileUpBlock2d, self).__init__()

        self.conv = nn.Conv2D(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                              padding=padding, groups=in_features, bias_attr=False)
        self.conv1 = nn.Conv2D(in_channels=in_features, out_channels=out_features, kernel_size=1,
                              padding=0, bias_attr=False)
        self.norm = SyncBatchNorm(in_features)
        self.norm1 = SyncBatchNorm(out_features)
    
    def forward(self, x):
        out = F.interpolate(x, scale_factor=2)
        out = self.conv(out)
        out = self.norm(out)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm1(out)
        out = F.relu(out)
        return out


213 214 215 216 217 218 219 220 221 222 223 224

class DownBlock2d(nn.Layer):
    """
    Downsampling block for use in encoder.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 kernel_size=3,
                 padding=1,
                 groups=1):
        super(DownBlock2d, self).__init__()
L
LielinJiang 已提交
225
        self.conv = nn.Conv2D(in_channels=in_features,
226 227 228 229
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              padding=padding,
                              groups=groups)
F
FNRE 已提交
230
        self.norm = SyncBatchNorm(out_features)
L
LielinJiang 已提交
231
        self.pool = nn.AvgPool2D(kernel_size=(2, 2))
232 233 234 235 236 237 238 239 240

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        out = self.pool(out)
        return out


L
lzzyzlbb 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
class MobileDownBlock2d(nn.Layer):
    """
    Downsampling block for use in encoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(MobileDownBlock2d, self).__init__()
        self.conv = nn.Conv2D(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                              padding=padding, groups=in_features, bias_attr=False)
        self.norm = SyncBatchNorm(in_features)
        self.pool = nn.AvgPool2D(kernel_size=(2, 2))

        self.conv1 = nn.Conv2D(in_features, out_features, kernel_size=1, padding=0, stride=1, bias_attr=False)
        self.norm1 = SyncBatchNorm(out_features)
        

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm1(out)
        out = F.relu(out)
        out = self.pool(out)
        return out


268 269 270 271 272 273 274 275 276
class SameBlock2d(nn.Layer):
    """
    Simple block, preserve spatial resolution.
    """
    def __init__(self,
                 in_features,
                 out_features,
                 groups=1,
                 kernel_size=3,
L
lzzyzlbb 已提交
277 278
                 padding=1,
                 mobile_net=False):
279
        super(SameBlock2d, self).__init__()
L
LielinJiang 已提交
280
        self.conv = nn.Conv2D(in_channels=in_features,
281 282 283
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              padding=padding,
L
lzzyzlbb 已提交
284 285
                              groups=groups,
                              bias_attr=(mobile_net==False))
F
FNRE 已提交
286
        self.norm = SyncBatchNorm(out_features)
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        return out


class Encoder(nn.Layer):
    """
    Hourglass Encoder
    """
    def __init__(self,
                 block_expansion,
                 in_features,
                 num_blocks=3,
L
lzzyzlbb 已提交
303 304
                 max_features=256,
                 mobile_net = False):
305 306 307 308
        super(Encoder, self).__init__()

        down_blocks = []
        for i in range(num_blocks):
L
lzzyzlbb 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321
            if mobile_net:
                down_blocks.append(
                    MobileDownBlock2d(in_features if i == 0 else min(
                        max_features, block_expansion * (2**i)),
                                min(max_features, block_expansion * (2**(i + 1))),
                                kernel_size=3, padding=1))
            else:
                down_blocks.append(
                    DownBlock2d(in_features if i == 0 else min(
                        max_features, block_expansion * (2**i)),
                                min(max_features, block_expansion * (2**(i + 1))),
                                kernel_size=3,
                                padding=1))
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        self.down_blocks = nn.LayerList(down_blocks)

    def forward(self, x):
        outs = [x]
        for down_block in self.down_blocks:
            outs.append(down_block(outs[-1]))
        return outs


class Decoder(nn.Layer):
    """
    Hourglass Decoder
    """
    def __init__(self,
                 block_expansion,
                 in_features,
                 num_blocks=3,
L
lzzyzlbb 已提交
339 340
                 max_features=256,
                 mobile_net = False):
341 342 343 344 345 346
        super(Decoder, self).__init__()

        up_blocks = []

        for i in range(num_blocks)[::-1]:
            out_filters = min(max_features, block_expansion * (2**i))
L
lzzyzlbb 已提交
347 348 349 350 351 352 353 354 355 356
            if mobile_net:
                in_filters = (1 if i == num_blocks - 1 else 2) * min(
                max_features, block_expansion * (2**(i + 1)))
                up_blocks.append(
                    MobileUpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))
            else:
                in_filters = (1 if i == num_blocks - 1 else 2) * min(
                    max_features, block_expansion * (2**(i + 1)))
                up_blocks.append(
                    UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

        self.up_blocks = nn.LayerList(up_blocks)
        self.out_filters = block_expansion + in_features

    def forward(self, x):
        out = x.pop()
        for up_block in self.up_blocks:
            out = up_block(out)
            skip = x.pop()
            out = paddle.concat([out, skip], axis=1)
        return out


class Hourglass(nn.Layer):
    """
    Hourglass architecture.
    """
    def __init__(self,
                 block_expansion,
                 in_features,
                 num_blocks=3,
L
lzzyzlbb 已提交
378 379
                 max_features=256,
                 mobile_net=False):
380 381
        super(Hourglass, self).__init__()
        self.encoder = Encoder(block_expansion, in_features, num_blocks,
L
lzzyzlbb 已提交
382
                               max_features, mobile_net=mobile_net)
383
        self.decoder = Decoder(block_expansion, in_features, num_blocks,
L
lzzyzlbb 已提交
384
                               max_features, mobile_net=mobile_net)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        self.out_filters = self.decoder.out_filters

    def forward(self, x):
        return self.decoder(self.encoder(x))


class AntiAliasInterpolation2d(nn.Layer):
    """
    Band-limited downsampling, for better preservation of the input signal.
    """
    def __init__(self, channels, scale):
        super(AntiAliasInterpolation2d, self).__init__()
        sigma = (1 / scale - 1) / 2
        kernel_size = 2 * round(sigma * 4) + 1
        self.ka = kernel_size // 2
        self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka

        kernel_size = [kernel_size, kernel_size]
        sigma = [sigma, sigma]
        # The gaussian kernel is the product of the
        # gaussian function of each dimension.
        kernel = 1
        meshgrids = paddle.meshgrid(
            [paddle.arange(size, dtype='float32') for size in kernel_size])
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
F
FNRE 已提交
411
            kernel *= paddle.exp(-(mgrid - mean)**2 / (2 * std**2 + 1e-9))
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / paddle.sum(kernel)
        # Reshape to depthwise convolutional weight
        kernel = kernel.reshape([1, 1, *kernel.shape])
        kernel = paddle.tile(kernel, [channels, *[1] * (kernel.dim() - 1)])

        self.register_buffer('weight', kernel)
        self.groups = channels
        self.scale = scale

    def forward(self, input):
        if self.scale == 1.0:
            return input

        out = F.pad(input, [self.ka, self.kb, self.ka, self.kb])
        out = F.conv2d(out, weight=self.weight, groups=self.groups)
F
FNRE 已提交
429 430 431 432
        out.stop_gradient = False
        inv_scale = 1 / self.scale
        int_inv_scale = int(inv_scale)
        assert (inv_scale == int_inv_scale)
L
lzzyzlbb 已提交
433
        #out = out[:, :, ::int_inv_scale, ::int_inv_scale]
F
FNRE 已提交
434
        # patch end
L
lzzyzlbb 已提交
435
        out = paddle.fluid.layers.resize_nearest(out, scale=self.scale)
436
        return out