msvsr_model.py 6.8 KB
Newer Older
W
wangna11BD 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from .builder import MODELS
from .sr_model import BaseSRModel
from .generators.basicvsr import ResidualBlockNoBN, PixelShufflePack, SPyNet
from .generators.msvsr import ModifiedSPyNet
from ..modules.init import reset_parameters
from ..utils.visual import tensor2img


@MODELS.register()
class MultiStageVSRModel(BaseSRModel):
    """PP-MSVSR Model.

    Paper:
        PP-MSVSR: Multi-Stage Video Super-Resolution, 2021
    """
33

W
wangna11BD 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    def __init__(self, generator, fix_iter, pixel_criterion=None):
        """Initialize the PP-MSVSR class.

        Args:
            generator (dict): config of generator.
            fix_iter (dict): config of fix_iter.
            pixel_criterion (dict): config of pixel criterion.
        """
        super(MultiStageVSRModel, self).__init__(generator, pixel_criterion)
        self.fix_iter = fix_iter
        self.current_iter = 1
        self.flag = True
        init_basicvsr_weight(self.nets['generator'])
        if not self.fix_iter:
            print('init train all parameters!!!')
            for name, param in self.nets['generator'].named_parameters():
                param.trainable = True
                if 'spynet' in name:
                    param.optimize_attr['learning_rate'] = 0.25

    def setup_input(self, input):
        self.lq = paddle.to_tensor(input['lq'])
        self.visual_items['lq'] = self.lq[:, 0, :, :, :]
        if 'gt' in input:
            self.gt = paddle.to_tensor(input['gt'])
            self.visual_items['gt'] = self.gt[:, 0, :, :, :]
        self.image_paths = input['lq_path']

    def train_iter(self, optims=None):
        optims['optim'].clear_grad()
        if self.fix_iter:
            if self.current_iter == 1:
                print('Train MSVSR with fixed spynet for', self.fix_iter,
                      'iters.')
                for name, param in self.nets['generator'].named_parameters():
                    if 'spynet' in name:
                        param.trainable = False
            elif self.current_iter >= self.fix_iter + 1 and self.flag:
                print('Train all the parameters.')
                for name, param in self.nets['generator'].named_parameters():
                    param.trainable = True
                    if 'spynet' in name:
                        param.optimize_attr['learning_rate'] = 0.25
                self.flag = False
                for net in self.nets.values():
                    net.find_unused_parameters = False

        output = self.nets['generator'](self.lq)
        if isinstance(output, (list, tuple)):
            out_stage2, output = output
            loss_pix_stage2 = self.pixel_criterion(out_stage2, self.gt)
            self.losses['loss_pix_stage2'] = loss_pix_stage2
        self.visual_items['output'] = output[:, 0, :, :, :]
        # pixel loss
        loss_pix = self.pixel_criterion(output, self.gt)
        self.losses['loss_pix'] = loss_pix

        self.loss = sum(_value for _key, _value in self.losses.items()
                        if 'loss_pix' in _key)
        self.losses['loss'] = self.loss

        self.loss.backward()
        optims['optim'].step()

        self.current_iter += 1

B
Birdylx 已提交
100
    # amp train with brute force implementation
B
Birdylx 已提交
101
    def train_iter_amp(self, optims=None, scalers=None, amp_level='O1'):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        optims['optim'].clear_grad()
        if self.fix_iter:
            if self.current_iter == 1:
                print('Train MSVSR with fixed spynet for', self.fix_iter,
                      'iters.')
                for name, param in self.nets['generator'].named_parameters():
                    if 'spynet' in name:
                        param.trainable = False
            elif self.current_iter >= self.fix_iter + 1 and self.flag:
                print('Train all the parameters.')
                for name, param in self.nets['generator'].named_parameters():
                    param.trainable = True
                    if 'spynet' in name:
                        param.optimize_attr['learning_rate'] = 0.25
                self.flag = False
                for net in self.nets.values():
                    net.find_unused_parameters = False

        # put loss computation in amp context
        with paddle.amp.auto_cast(enable=True, level=amp_level):
            output = self.nets['generator'](self.lq)
            if isinstance(output, (list, tuple)):
                out_stage2, output = output
                loss_pix_stage2 = self.pixel_criterion(out_stage2, self.gt)
                self.losses['loss_pix_stage2'] = loss_pix_stage2
            self.visual_items['output'] = output[:, 0, :, :, :]
            # pixel loss
            loss_pix = self.pixel_criterion(output, self.gt)
            self.losses['loss_pix'] = loss_pix

            self.loss = sum(_value for _key, _value in self.losses.items()
                            if 'loss_pix' in _key)
B
Birdylx 已提交
134
            self.losses['loss'] = self.loss
135

B
Birdylx 已提交
136
        scaled_loss = scalers[0].scale(self.loss)
137
        scaled_loss.backward()
B
Birdylx 已提交
138
        scalers[0].minimize(optims['optim'], scaled_loss)
139 140 141

        self.current_iter += 1

W
wangna11BD 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    def test_iter(self, metrics=None):
        self.gt = self.gt.cpu()
        self.nets['generator'].eval()
        with paddle.no_grad():
            output = self.nets['generator'](self.lq)
            if isinstance(output, (list, tuple)):
                out_stage1, output = output
        self.nets['generator'].train()

        out_img = []
        gt_img = []

        _, t, _, _, _ = self.gt.shape
        for i in range(t):
            out_tensor = output[0, i]
            gt_tensor = self.gt[0, i]
            out_img.append(tensor2img(out_tensor, (0., 1.)))
            gt_img.append(tensor2img(gt_tensor, (0., 1.)))

        if metrics is not None:
            for metric in metrics.values():
                metric.update(out_img, gt_img, is_seq=True)


def init_basicvsr_weight(net):
    for m in net.children():
        if hasattr(m,
                   'weight') and not isinstance(m,
                                                (nn.BatchNorm, nn.BatchNorm2D)):
            reset_parameters(m)
            continue

        if (not isinstance(
                m,
            (ResidualBlockNoBN, PixelShufflePack, SPyNet, ModifiedSPyNet))):
            init_basicvsr_weight(m)