sr_image_dataset.py 8.0 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
# import mmcv
import os
import cv2
import random
import numpy as np
import paddle.vision.transforms as transform

from pathlib import Path
from paddle.io import Dataset
from .builder import DATASETS


def scandir(dir_path, suffix=None, recursive=False):
    """Scan a directory to find the interested files.
    """
    if isinstance(dir_path, (str, Path)):
        dir_path = str(dir_path)
    else:
        raise TypeError('"dir_path" must be a string or Path object')

    if (suffix is not None) and not isinstance(suffix, (str, tuple)):
        raise TypeError('"suffix" must be a string or tuple of strings')

    root = dir_path

    def _scandir(dir_path, suffix, recursive):
        for entry in os.scandir(dir_path):
            if not entry.name.startswith('.') and entry.is_file():
                rel_path = os.path.relpath(entry.path, root)
                if suffix is None:
                    yield rel_path
                elif rel_path.endswith(suffix):
                    yield rel_path
            else:
                if recursive:
                    yield from _scandir(
                        entry.path, suffix=suffix, recursive=recursive)
                else:
                    continue

    return _scandir(dir_path, suffix=suffix, recursive=recursive)

def paired_paths_from_folder(folders, keys, filename_tmpl):
    """Generate paired paths from folders.
    """
    assert len(folders) == 2, (
        'The len of folders should be 2 with [input_folder, gt_folder]. '
        f'But got {len(folders)}')
    assert len(keys) == 2, (
        'The len of keys should be 2 with [input_key, gt_key]. '
        f'But got {len(keys)}')
    input_folder, gt_folder = folders
    input_key, gt_key = keys

    input_paths = list(scandir(input_folder))
    gt_paths = list(scandir(gt_folder))
    assert len(input_paths) == len(gt_paths), (
        f'{input_key} and {gt_key} datasets have different number of images: '
        f'{len(input_paths)}, {len(gt_paths)}.')
    paths = []
    for gt_path in gt_paths:
        basename, ext = os.path.splitext(os.path.basename(gt_path))
        input_name = f'{filename_tmpl.format(basename)}{ext}'
        input_path = os.path.join(input_folder, input_name)
        assert input_name in input_paths, (f'{input_name} is not in '
                                           f'{input_key}_paths.')
        gt_path = os.path.join(gt_folder, gt_path)
        paths.append(
            dict([(f'{input_key}_path', input_path),
                  (f'{gt_key}_path', gt_path)]))
    return paths

def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path):
    """Paired random crop.

    It crops lists of lq and gt images with corresponding locations.

    Args:
        img_gts (list[ndarray] | ndarray): GT images. Note that all images
            should have the same shape. If the input is an ndarray, it will
            be transformed to a list containing itself.
        img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
            should have the same shape. If the input is an ndarray, it will
            be transformed to a list containing itself.
        gt_patch_size (int): GT patch size.
        scale (int): Scale factor.
        gt_path (str): Path to ground-truth.

    Returns:
        list[ndarray] | ndarray: GT images and LQ images. If returned results
            only have one element, just return ndarray.
    """

    if not isinstance(img_gts, list):
        img_gts = [img_gts]
    if not isinstance(img_lqs, list):
        img_lqs = [img_lqs]

    h_lq, w_lq, _ = img_lqs[0].shape
    h_gt, w_gt, _ = img_gts[0].shape
    lq_patch_size = gt_patch_size // scale

    if h_gt != h_lq * scale or w_gt != w_lq * scale:
        raise ValueError(
            f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
            f'multiplication of LQ ({h_lq}, {w_lq}).')
    if h_lq < lq_patch_size or w_lq < lq_patch_size:
        raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
                         f'({lq_patch_size}, {lq_patch_size}). '
                         f'Please remove {gt_path}.')

    # randomly choose top and left coordinates for lq patch
    top = random.randint(0, h_lq - lq_patch_size)
    left = random.randint(0, w_lq - lq_patch_size)

    # crop lq patch
    img_lqs = [
        v[top:top + lq_patch_size, left:left + lq_patch_size, ...]
        for v in img_lqs
    ]

    # crop corresponding gt patch
    top_gt, left_gt = int(top * scale), int(left * scale)
    img_gts = [
        v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...]
        for v in img_gts
    ]
    if len(img_gts) == 1:
        img_gts = img_gts[0]
    if len(img_lqs) == 1:
        img_lqs = img_lqs[0]
    return img_gts, img_lqs


def augment(imgs, hflip=True, rotation=True, flows=None):
    """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
    """
    hflip = hflip and random.random() < 0.5
    vflip = rotation and random.random() < 0.5
    rot90 = rotation and random.random() < 0.5

    def _augment(img):
        if hflip:
            cv2.flip(img, 1, img)
        if vflip:
            cv2.flip(img, 0, img)
        if rot90:
            img = img.transpose(1, 0, 2)
        return img

    def _augment_flow(flow):
        if hflip:
            cv2.flip(flow, 1, flow)
            flow[:, :, 0] *= -1
        if vflip:
            cv2.flip(flow, 0, flow)
            flow[:, :, 1] *= -1
        if rot90:
            flow = flow.transpose(1, 0, 2)
            flow = flow[:, :, [1, 0]]
        return flow

    if not isinstance(imgs, list):
        imgs = [imgs]
    imgs = [_augment(img) for img in imgs]
    if len(imgs) == 1:
        imgs = imgs[0]

    if flows is not None:
        if not isinstance(flows, list):
            flows = [flows]
        flows = [_augment_flow(flow) for flow in flows]
        if len(flows) == 1:
            flows = flows[0]
        return imgs, flows
    else:
        return imgs


@DATASETS.register()
class SRImageDataset(Dataset):
    """Paired image dataset for image restoration."""

    def __init__(self, cfg):
        super(SRImageDataset, self).__init__()
        self.cfg = cfg

        self.file_client = None
        self.io_backend_opt = cfg['io_backend']

        self.gt_folder, self.lq_folder = cfg['dataroot_gt'], cfg['dataroot_lq']
        if 'filename_tmpl' in cfg:
            self.filename_tmpl = cfg['filename_tmpl']
        else:
            self.filename_tmpl = '{}'

        if self.io_backend_opt['type'] == 'lmdb':
            #TODO: LielinJiang support lmdb to accelerate io
            pass
        elif 'meta_info_file' in self.cfg and self.cfg[
                'meta_info_file'] is not None:
            #TODO: LielinJiang support lmdb to accelerate io
            pass
        else:
            self.paths = paired_paths_from_folder(
                [self.lq_folder, self.gt_folder], ['lq', 'gt'],
                self.filename_tmpl)

    def __getitem__(self, index):
        scale = self.cfg['scale']

        # Load gt and lq images. Dimension order: HWC; channel order: BGR;
        # image range: [0, 1], float32.
        gt_path = self.paths[index]['gt_path']
        lq_path = self.paths[index]['lq_path']

        img_gt = cv2.imread(gt_path).astype(np.float32) / 255.
        img_lq = cv2.imread(lq_path).astype(np.float32) / 255.

        # augmentation for training
        if self.cfg['phase'] == 'train':
            gt_size = self.cfg['gt_size']
            # random crop
            img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
                                                gt_path)
            # flip, rotation
            img_gt, img_lq = augment([img_gt, img_lq], self.cfg['use_flip'],
                                     self.cfg['use_rot'])

        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        permute = transform.Permute()
        img_gt = permute(img_gt)
        img_lq = permute(img_lq)
        return {
            'lq': img_lq,
            'gt': img_gt,
            'lq_path': lq_path,
            'gt_path': gt_path
        }

    def __len__(self):
        return len(self.paths)