utils.py 10.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
import math
import numpy as np
from PIL import Image

import paddle

# set random seed for reproducibility
np.random.seed(0)


def is_image_file(filename):
    return any(
        filename.endswith(extension)
        for extension in ['.png', '.jpg', '.jpeg', '.PNG', '.JPG', '.JPEG'])


def calculate_valid_crop_size(crop_size, upscale_factor):
    return crop_size - (crop_size % upscale_factor)


def gaussian_noise(image, std_dev):
    noise = np.rint(
        np.random.normal(loc=0.0, scale=std_dev, size=np.shape(image)))
    return Image.fromarray(np.clip(image + noise, 0, 255).astype(np.uint8))


#################################################################################
# MATLAB imresize taken from ESRGAN (https://github.com/xinntao/BasicSR)
#################################################################################


def cubic(x):
    absx = paddle.abs(x)
    absx2 = absx**2
    absx3 = absx**3
    temp1 = paddle.cast((absx <= 1), absx.dtype)
    temp2 = paddle.cast((absx > 1), absx.dtype) * paddle.cast(
        (absx <= 2), absx.dtype)
    return (1.5 * absx3 - 2.5 * absx2 +
            1) * temp1 + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * temp2


def calculate_weights_indices(in_length, out_length, scale, kernel,
                              kernel_width, antialiasing):
    if (scale < 1) and (antialiasing):
        # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
        kernel_width = kernel_width / scale

    # Output-space coordinates
    x = paddle.linspace(1, out_length, out_length)

    # Input-space coordinates. Calculate the inverse mapping such that 0.5
    # in output space maps to 0.5 in input space, and 0.5+scale in output
    # space maps to 1.5 in input space.
    u = x / scale + 0.5 * (1 - 1 / scale)

    # What is the left-most pixel that can be involved in the computation?
    left = paddle.floor(u - kernel_width / 2)

    # What is the maximum number of pixels that can be involved in the
    # computation?  Note: it's OK to use an extra pixel here; if the
    # corresponding weights are all zero, it will be eliminated at the end
    # of this function.
    P = math.ceil(kernel_width) + 2

    # The indices of the input pixels involved in computing the k-th output
    # pixel are in row k of the indices matrix.
    indices = left.reshape([out_length, 1]).expand([
        out_length, P
    ]) + paddle.linspace(0, P - 1, P).reshape([1, P]).expand([out_length, P])

    # The weights used to compute the k-th output pixel are in row k of the
    # weights matrix.
    distance_to_center = u.reshape([out_length, 1]).expand([out_length, P
                                                            ]) - indices
    # apply cubic kernel
    if (scale < 1) and (antialiasing):
        weights = scale * cubic(distance_to_center * scale)
    else:
        weights = cubic(distance_to_center)
    # Normalize the weights matrix so that each row sums to 1.
    weights_sum = paddle.sum(weights, 1).reshape([out_length, 1])
    weights = weights / weights_sum.expand([out_length, P])

    # If a column in weights is all zero, get rid of it. only consider the first and last column.
    weights_zero_tmp = np.sum((weights.numpy() == 0), 0)
    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
        indices = indices[:, 1:1 + P - 2]
        weights = weights[:, 1:1 + P - 2]

    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
        indices = indices[:, 0:P - 2]
        weights = weights[:, 0:P - 2]

    sym_len_s = -indices.min() + 1
    sym_len_e = indices.max() - in_length
    indices = indices + sym_len_s - 1
    return weights, indices, int(sym_len_s), int(sym_len_e)


def imresize(img, scale, antialiasing=True):
    # Now the scale should be the same for H and W
    # input: img: CHW RGB [0,1]
    # output: CHW RGB [0,1] w/o round

    in_C, in_H, in_W = img.shape
    _, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
    kernel_width = 4
    kernel = 'cubic'

    # Return the desired dimension order for performing the resize.  The
    # strategy is to perform the resize first along the dimension with the
    # smallest scale factor.
    # Now we do not support this.

    # get weights and indices
    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
        in_H, out_H, scale, kernel, kernel_width, antialiasing)
    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
        in_W, out_W, scale, kernel, kernel_width, antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = paddle.zeros([in_C, in_H + sym_len_Hs + sym_len_He, in_W])
    img_aug[:, sym_len_Hs:sym_len_Hs + in_H, :] = img

    sym_patch = img[:, :sym_len_Hs, :]
    inv_idx = paddle.arange(sym_patch.shape[1] - 1, -1, -1)
    sym_patch_inv = paddle.index_select(sym_patch, inv_idx, 1)

    img_aug[:, :sym_len_Hs, :] = sym_patch_inv

    sym_patch = img[:, -sym_len_He:, :]
    inv_idx = paddle.arange(sym_patch.shape[1] - 1, -1, -1)
    sym_patch_inv = paddle.index_select(sym_patch, inv_idx, 1)

    img_aug[:,
            sym_len_Hs + in_H:sym_len_Hs + in_H + sym_len_He, :] = sym_patch_inv

    out_1 = paddle.zeros([in_C, out_H, in_W])
    kernel_width = weights_H.shape[1]
    for i in range(out_H):
        idx = int(indices_H[i][0])

        out_1[0, i, :] = paddle.mv(
            img_aug[0, idx:idx + kernel_width, :].transpose([1, 0]),
            (weights_H[i]))
        out_1[1, i, :] = paddle.mv(
            img_aug[1, idx:idx + kernel_width, :].transpose([1, 0]),
            (weights_H[i]))
        out_1[2, i, :] = paddle.mv(
            img_aug[2, idx:idx + kernel_width, :].transpose([1, 0]),
            (weights_H[i]))

    # process W dimension
    # symmetric copying
    out_1_aug = paddle.zeros([in_C, out_H, in_W + sym_len_Ws + sym_len_We])
    out_1_aug[:, :, sym_len_Ws:sym_len_Ws + in_W] = out_1

    sym_patch = out_1[:, :, :sym_len_Ws]
    inv_idx = paddle.arange(sym_patch.shape[2] - 1, -1, -1)
    sym_patch_inv = paddle.index_select(sym_patch, inv_idx, 2)
    out_1_aug[:, :, 0:sym_len_Ws] = sym_patch_inv

    sym_patch = out_1[:, :, -sym_len_We:]
    inv_idx = paddle.arange(sym_patch.shape[2] - 1, -1, -1)
    sym_patch_inv = paddle.index_select(sym_patch, inv_idx, 2)
    out_1_aug[:, :,
              sym_len_Ws + in_W:sym_len_Ws + in_W + sym_len_We] = sym_patch_inv

    out_2 = paddle.zeros([in_C, out_H, out_W])
    kernel_width = weights_W.shape[1]
    for i in range(out_W):
        idx = int(indices_W[i][0])
        out_2[0, :, i] = out_1_aug[0, :,
                                   idx:idx + kernel_width].mv(weights_W[i])
        out_2[1, :, i] = out_1_aug[1, :,
                                   idx:idx + kernel_width].mv(weights_W[i])
        out_2[2, :, i] = out_1_aug[2, :,
                                   idx:idx + kernel_width].mv(weights_W[i])

    return paddle.clip(out_2, 0, 1)


def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

    Args:
        pic (paddle.Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes

    Returns:
        PIL Image: Image converted to PIL Image.
    """
    if not (isinstance(pic, paddle.Tensor) or isinstance(pic, np.ndarray)):
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(
            type(pic)))

    elif isinstance(pic, paddle.Tensor):
        if len(pic.shape) not in {2, 3}:
            raise ValueError(
                'pic should be 2/3 dimensional. Got {} dimensions.'.format(
                    pic.ndimension()))

        elif len(pic.shape) == 2:
            # if 2D image, add channel dimension (CHW)
            pic = pic.unsqueeze(0)

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError(
                'pic should be 2/3 dimensional. Got {} dimensions.'.format(
                    pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

    npimg = pic
    if isinstance(pic, paddle.Tensor) and mode != 'F':
        pic = pic.numpy()

    if pic.dtype == 'float32':
        npimg = np.transpose((pic * 255.).astype('uint8'), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
        elif npimg.dtype == np.int16:
            expected_mode = 'I;16'
        elif npimg.dtype == np.int32:
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError(
                "Incorrect mode ({}) supplied for input type {}. Should be {}".
                format(mode, np.dtype, expected_mode))
        mode = expected_mode

    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(
                permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

    elif npimg.shape[2] == 4:
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(
                permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(
                permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)