singan_predictor.py 9.0 KB
Newer Older
B
BrilliantYuKaimin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
#  Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import cv2
import math
import skimage
import imageio

import paddle
import paddle.nn.functional as F
import paddle.vision.transforms as T

from .base_predictor import BasePredictor
from ..models.singan_model import pad_shape
from ppgan.models.generators import SinGANGenerator
from ppgan.utils.download import get_path_from_url
from ppgan.utils.visual import tensor2img, save_image, make_grid

pretrained_weights_url = {
    'trees': 'https://paddlegan.bj.bcebos.com/models/singan_universal_trees.pdparams',
    'stone': 'https://paddlegan.bj.bcebos.com/models/singan_universal_stone.pdparams',
    'mountains': 'https://paddlegan.bj.bcebos.com/models/singan_universal_mountains.pdparams',
    'birds': 'https://paddlegan.bj.bcebos.com/models/singan_universal_birds.pdparams',
    'lightning': 'https://paddlegan.bj.bcebos.com/models/singan_universal_lightning.pdparams'
}


def imread(path):
    return cv2.cvtColor(
        cv2.imread(
            path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)

def imgpath2tensor(path):
    return paddle.to_tensor(T.Compose([
        T.Transpose(),
        T.Normalize(127.5, 127.5)
    ])(imread(path))).unsqueeze(0)
    
def dilate_mask(mask, mode):
    if mode == "harmonization":
        element = skimage.morphology.disk(radius=7)
    elif mode == "editing":
        element = skimage.morphology.disk(radius=20)
    else:
        raise NotImplementedError('mode %s is not implemented' % mode)
    mask = skimage.morphology.binary_dilation(mask, selem=element)
    mask = skimage.filters.gaussian(mask, sigma=5)
    return mask

class SinGANPredictor(BasePredictor):
    def __init__(self,
                 output_path='output_dir',
                 weight_path=None,
                 pretrained_model=None,
                 seed=None):
        self.output_path = output_path
        if weight_path is None:
            if pretrained_model in pretrained_weights_url.keys():
                weight_path = get_path_from_url(
                    pretrained_weights_url[pretrained_model])
            else:
                raise ValueError(
                    'Predictor need a weight path or a pretrained model.')
        checkpoint = paddle.load(weight_path)

        self.scale_num = checkpoint['scale_num'].item()
        self.coarsest_shape = checkpoint['coarsest_shape'].tolist()
        self.nfc_init = checkpoint['nfc_init'].item()
        self.min_nfc_init = checkpoint['min_nfc_init'].item()
        self.num_layers = checkpoint['num_layers'].item()
        self.ker_size = checkpoint['ker_size'].item()
        self.noise_zero_pad = checkpoint['noise_zero_pad'].item()
        self.generator = SinGANGenerator(self.scale_num, 
                                         self.coarsest_shape, 
                                         self.nfc_init, 
                                         self.min_nfc_init, 
                                         3, 
                                         self.num_layers, 
                                         self.ker_size, 
                                         self.noise_zero_pad)
        self.generator.set_state_dict(checkpoint)
        self.generator.eval()
        self.scale_factor = self.generator.scale_factor.item()
        self.niose_pad_size = 0 if self.noise_zero_pad \
                                else self.generator._pad_size
        if seed is not None:
            paddle.seed(seed)

    def noise_like(self, x):
        return paddle.randn(pad_shape(x.shape, self.niose_pad_size))

    def run(self, 
            mode='random_sample', 
            generate_start_scale=0, 
            scale_h=1.0, 
            scale_v=1.0, 
            ref_image=None,
            mask_image=None,
            sr_factor=4,
            animation_alpha=0.9,
            animation_beta=0.9,
            animation_frames=20,
            animation_duration=0.1,
            n_row=5,
            n_col=3):

        # check config
        if mode not in ['random_sample', 
                        'sr', 'animation', 
                        'harmonization', 
                        'editing', 'paint2image']:
            raise ValueError(
                'Only random_sample, sr, animation, harmonization, \
                 editing and paint2image is implemented.')
        if mode in ['sr', 'harmonization', 'editing', 'paint2image'] and \
           ref_image is None:
            raise ValueError(
                'When mode is sr, harmonization, editing, or \
                 paint2image, a reference image must be privided.')
        if mode in ['harmonization', 'editing'] and mask_image is None:
            raise ValueError(
                'When mode is harmonization or editing, \
                 a mask image must be privided.')

        if mode == 'animation':
            batch_size = animation_frames
        elif mode == 'random_sample':
            batch_size = n_row * n_col
        else:
            batch_size = 1

        # prepare input
        if mode == 'harmonization' or mode == 'editing' or mode == 'paint2image':
            ref = imgpath2tensor(ref_image)
            x_init = F.interpolate(
                ref, None, 
                self.scale_factor ** (self.scale_num - generate_start_scale), 
                'bicubic')
            x_init = F.interpolate(
                x_init, None, 1 / self.scale_factor, 'bicubic')
        elif mode == 'sr':
            ref = imgpath2tensor(ref_image)
            sr_iters = math.ceil(math.log(sr_factor, 1 / self.scale_factor))
            sr_scale_factor = sr_factor ** (1 / sr_factor)
            x_init = F.interpolate(ref, None, sr_scale_factor, 'bicubic')
        else:
            x_init = paddle.zeros([
                batch_size,
                self.coarsest_shape[1],
                int(self.coarsest_shape[2] * scale_v),
                int(self.coarsest_shape[3] * scale_h)])

        # forward
        if mode == 'sr':
            for _ in range(sr_iters):
                out = self.generator([self.noise_like(x_init)], x_init, -1, -1)
                x_init = F.interpolate(out, None, sr_scale_factor, 'bicubic')
        else:
            z_pyramid = [
                self.noise_like(
                    F.interpolate(
                        x_init, None, 1 / self.scale_factor ** i)) 
                for i in range(self.scale_num - generate_start_scale)]

            if mode == 'animation':
                a = animation_alpha
                b = animation_beta
                for i in range(len(z_pyramid)):
                    z = paddle.chunk(z_pyramid[i], batch_size)
                    if i == 0 and generate_start_scale == 0:
                        z_0 = F.interpolate(
                            self.generator.z_fixed, 
                            pad_shape(x_init.shape[-2:], self.niose_pad_size), 
                            None, 'bicubic')
                    else:
                        z_0 = 0
                    z_1 = z_0
                    z_2 = 0.95 * z_1 + 0.05 * z[0]
                    for j in range(len(z)):
                        z[j] = a * z_0 + (1 - a) * (z_2 + b * (z_2 - z_1) + (1 - b) * z[j])
                        z_1 = z_2
                        z_2 = z[j]
                    z = paddle.concat(z)
                    z_pyramid[i] = z

            out = self.generator(z_pyramid, x_init, self.scale_num - 1, generate_start_scale)
        
        # postprocess and save    
        os.makedirs(self.output_path, exist_ok=True)
        if mode == 'animation':
            frames = [tensor2img(x) for x in out.chunk(animation_frames)]
            imageio.mimsave(
                os.path.join(self.output_path, 'animation.gif'), 
                frames, 'GIF', duration=animation_duration)
        else:
            if mode == 'harmonization' or mode == 'editing':
                mask = cv2.imread(mask_image, cv2.IMREAD_GRAYSCALE)
                mask = paddle.to_tensor(dilate_mask(mask, mode), 'float32')
                out = F.interpolate(out, mask.shape, None, 'bicubic')
                out = (1 - mask) * ref + mask * out
            elif mode == 'sr':
                out = F.interpolate(
                    out, 
                    [ref.shape[-2] * sr_factor, ref.shape[-1] * sr_factor],
                    None, 'bicubic')
            elif mode == 'paint2image':
                out = F.interpolate(out, ref.shape[-2:], None, 'bicubic')
            elif mode == 'random_sample':
                out = make_grid(out, n_row)

            save_image(tensor2img(out), os.path.join(self.output_path, mode + '.png'))