singan.py 4.8 KB
Newer Older
B
BrilliantYuKaimin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import paddle
from ppgan.apps import SinGANPredictor

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--output_path",
                        type=str,
                        default='output_dir',
                        help="path to output image dir")

    parser.add_argument("--weight_path",
                        type=str,
                        default=None,
                        help="path to model checkpoint path")

    parser.add_argument("--pretrained_model",
                        type=str,
                        default=None,
                        help="a pretianed model, only trees, stone, mountains, birds, and lightning are implemented.")

    parser.add_argument("--mode",
                        type=str,
                        default="random_sample",
                        help="type of model for loading pretrained model")

    parser.add_argument("--generate_start_scale",
                        type=int,
                        default=0,
                        help="sample random seed for model's image generation")

    parser.add_argument("--seed",
                        type=int,
                        default=None,
                        help="sample random seed for model's image generation")

    parser.add_argument("--scale_h",
                        type=float,
                        default=1.0,
                        help="horizontal scale")

    parser.add_argument("--scale_v",
                        type=float,
                        default=1.0,
                        help="vertical scale")

    parser.add_argument("--ref_image",
                        type=str,
                        default=None,
                        help="reference image for harmonization, editing and paint2image")

    parser.add_argument("--mask_image",
                        type=str,
                        default=None,
                        help="mask image for harmonization and editing")

    parser.add_argument("--sr_factor",
                        type=float,
                        default=4.0,
                        help="scale for super resolution")

    parser.add_argument("--animation_alpha",
                        type=float,
                        default=0.9,
                        help="a parameter determines how close the frames of the sequence remain to the training image")

    parser.add_argument("--animation_beta",
                        type=float,
                        default=0.9,
                        help="a parameter controls the smoothness and rate of change in the generated clip")

    parser.add_argument("--animation_frames",
                        type=int,
                        default=20,
                        help="frame number of output animation when mode is animation")

    parser.add_argument("--animation_duration",
                        type=float,
                        default=0.1,
                        help="duration of each frame in animation")

    parser.add_argument("--n_row",
                        type=int,
                        default=5,
                        help="row number of output image grid")

    parser.add_argument("--n_col",
                        type=int,
                        default=3,
                        help="column number of output image grid")

    parser.add_argument("--cpu",
                        dest="cpu",
                        action="store_true",
                        help="cpu mode.")

    args = parser.parse_args()

    if args.cpu:
        paddle.set_device('cpu')

    predictor = SinGANPredictor(args.output_path,
                                args.weight_path,
                                args.pretrained_model,
                                args.seed)
    predictor.run(args.mode,
                  args.generate_start_scale,
                  args.scale_h,
                  args.scale_v,
                  args.ref_image,
                  args.mask_image,
                  args.sr_factor,
                  args.animation_alpha,
                  args.animation_beta,
                  args.animation_frames,
                  args.animation_duration,
                  args.n_row,
                  args.n_col)