basicvsr_model.py 4.1 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from .builder import MODELS
from .sr_model import BaseSRModel
from .generators.basicvsr import ResidualBlockNoBN, PixelShufflePack, SPyNet
from ..modules.init import reset_parameters
from ..utils.visual import tensor2img


@MODELS.register()
class BasicVSRModel(BaseSRModel):
    """BasicVSR Model.

    Paper: BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond, CVPR, 2021
    """
    def __init__(self, generator, fix_iter, pixel_criterion=None):
        """Initialize the BasicVSR class.

        Args:
            generator (dict): config of generator.
            fix_iter (dict): config of fix_iter.
            pixel_criterion (dict): config of pixel criterion.
        """
        super(BasicVSRModel, self).__init__(generator, pixel_criterion)
        self.fix_iter = fix_iter
        self.current_iter = 1
        self.flag = True
        init_basicvsr_weight(self.nets['generator'])

    def setup_input(self, input):
        self.lq = paddle.to_tensor(input['lq'])
        self.visual_items['lq'] = self.lq[:, 0, :, :, :]
        if 'gt' in input:
            self.gt = paddle.to_tensor(input['gt'])
            self.visual_items['gt'] = self.gt[:, 0, :, :, :]
        self.image_paths = input['lq_path']

    def train_iter(self, optims=None):
        optims['optim'].clear_grad()
        if self.fix_iter:
            if self.current_iter == 1:
                print('Train BasicVSR with fixed spynet for', self.fix_iter,
                      'iters.')
                for name, param in self.nets['generator'].named_parameters():
                    if 'spynet' in name:
                        param.trainable = False
            elif self.current_iter >= self.fix_iter + 1 and self.flag:
                print('Train all the parameters.')
                for name, param in self.nets['generator'].named_parameters():
                    param.trainable = True
                    if 'spynet' in name:
                        param.optimize_attr['learning_rate'] = 0.125
                self.flag = False
                for net in self.nets.values():
                    net.find_unused_parameters = False

        self.output = self.nets['generator'](self.lq)
        self.visual_items['output'] = self.output[:, 0, :, :, :]
        # pixel loss
        loss_pixel = self.pixel_criterion(self.output, self.gt)
        
        loss_pixel.backward()
        optims['optim'].step()
        
        self.losses['loss_pixel'] = loss_pixel

        self.current_iter += 1

    def test_iter(self, metrics=None):
        self.nets['generator'].eval()
        with paddle.no_grad():
            self.output = self.nets['generator'](self.lq)
            self.visual_items['output'] = self.output[:, 0, :, :, :]
        self.nets['generator'].train()

        out_img = []
        gt_img = []
        for out_tensor, gt_tensor in zip(self.output[0], self.gt[0]):
            # print(out_tensor.shape, gt_tensor.shape)
            out_img.append(tensor2img(out_tensor, (0., 1.)))
            gt_img.append(tensor2img(gt_tensor, (0., 1.)))

        if metrics is not None:
            for metric in metrics.values():
                metric.update(out_img, gt_img)


def init_basicvsr_weight(net):
    for m in net.children():
        if hasattr(m, 'weight') and not isinstance(m, (nn.BatchNorm, nn.BatchNorm2D)):
            reset_parameters(m)
            continue

        if (not isinstance(
                    m, (ResidualBlockNoBN, PixelShufflePack, SPyNet))):
            init_basicvsr_weight(m)