sr_model.py 3.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import paddle
import paddle.nn as nn
L
LielinJiang 已提交
17

L
LielinJiang 已提交
18
from .generators.builder import build_generator
19
from .criterions.builder import build_criterion
L
LielinJiang 已提交
20 21
from .base_model import BaseModel
from .builder import MODELS
22
from ..utils.visual import tensor2img
W
wangna11BD 已提交
23
from ..modules.init import reset_parameters
L
LielinJiang 已提交
24 25 26


@MODELS.register()
27 28 29
class BaseSRModel(BaseModel):
    """Base SR model for single image super-resolution.
    """
B
Birdylx 已提交
30

W
wangna11BD 已提交
31
    def __init__(self, generator, pixel_criterion=None, use_init_weight=False):
32 33 34 35 36 37
        """
        Args:
            generator (dict): config of generator.
            pixel_criterion (dict): config of pixel criterion.
        """
        super(BaseSRModel, self).__init__()
L
LielinJiang 已提交
38

39
        self.nets['generator'] = build_generator(generator)
L
LielinJiang 已提交
40

41 42
        if pixel_criterion:
            self.pixel_criterion = build_criterion(pixel_criterion)
W
wangna11BD 已提交
43 44
        if use_init_weight:
            init_sr_weight(self.nets['generator'])
L
LielinJiang 已提交
45

46
    def setup_input(self, input):
W
wangna11BD 已提交
47
        self.lq = paddle.to_tensor(input['lq'])
48
        self.visual_items['lq'] = self.lq
L
LielinJiang 已提交
49
        if 'gt' in input:
W
wangna11BD 已提交
50
            self.gt = paddle.to_tensor(input['gt'])
51
            self.visual_items['gt'] = self.gt
L
LielinJiang 已提交
52 53 54 55
        self.image_paths = input['lq_path']

    def forward(self):
        pass
L
LielinJiang 已提交
56

57 58
    def train_iter(self, optims=None):
        optims['optim'].clear_grad()
L
LielinJiang 已提交
59

60 61
        self.output = self.nets['generator'](self.lq)
        self.visual_items['output'] = self.output
L
LielinJiang 已提交
62
        # pixel loss
63 64 65 66 67
        loss_pixel = self.pixel_criterion(self.output, self.gt)
        self.losses['loss_pixel'] = loss_pixel

        loss_pixel.backward()
        optims['optim'].step()
L
LielinJiang 已提交
68

B
Birdylx 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    # amp training
    def train_iter_amp(self, optims=None, scalers=None, amp_level='O1'):
        optims['optim'].clear_grad()

        # put fwd and loss computation in amp context
        with paddle.amp.auto_cast(enable=True, level=amp_level):
            self.output = self.nets['generator'](self.lq)
            self.visual_items['output'] = self.output
            # pixel loss
            loss_pixel = self.pixel_criterion(self.output, self.gt)
            self.losses['loss_pixel'] = loss_pixel

        scaled_loss_pixel = scalers[0].scale(loss_pixel)
        scaled_loss_pixel.backward()
        scalers[0].minimize(optims['optim'], scaled_loss_pixel)

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def test_iter(self, metrics=None):
        self.nets['generator'].eval()
        with paddle.no_grad():
            self.output = self.nets['generator'](self.lq)
            self.visual_items['output'] = self.output
        self.nets['generator'].train()

        out_img = []
        gt_img = []
        for out_tensor, gt_tensor in zip(self.output, self.gt):
            out_img.append(tensor2img(out_tensor, (0., 1.)))
            gt_img.append(tensor2img(gt_tensor, (0., 1.)))

        if metrics is not None:
            for metric in metrics.values():
                metric.update(out_img, gt_img)
W
wangna11BD 已提交
101 102 103


def init_sr_weight(net):
B
Birdylx 已提交
104

W
wangna11BD 已提交
105 106 107 108 109 110
    def reset_func(m):
        if hasattr(m, 'weight') and (not isinstance(
                m, (nn.BatchNorm, nn.BatchNorm2D))):
            reset_parameters(m)

    net.apply(reset_func)