dense_motion.py 8.9 KB
Newer Older
F
FNRE 已提交
1
# code was heavily based on https://github.com/AliaksandrSiarohin/first-order-model
L
lzzyzlbb 已提交
2 3
# Users should be careful about adopting these functions in any commercial matters.
# https://github.com/AliaksandrSiarohin/first-order-model/blob/master/LICENSE.md
F
FNRE 已提交
4

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from .first_order import Hourglass, AntiAliasInterpolation2d, make_coordinate_grid, kp2gaussian


class DenseMotionNetwork(nn.Layer):
    """
    Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
    """
    def __init__(self,
                 block_expansion,
                 num_blocks,
                 max_features,
                 num_kp,
                 num_channels,
                 estimate_occlusion_map=False,
                 scale_factor=1,
L
lzzyzlbb 已提交
24 25
                 kp_variance=0.01,
                 mobile_net=False):
26 27 28 29 30
        super(DenseMotionNetwork, self).__init__()
        self.hourglass = Hourglass(block_expansion=block_expansion,
                                   in_features=(num_kp + 1) *
                                   (num_channels + 1),
                                   max_features=max_features,
L
lzzyzlbb 已提交
31 32
                                   num_blocks=num_blocks,
                                   mobile_net=mobile_net)
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        if mobile_net:
            self.mask = nn.Sequential(
                    nn.Conv2D(self.hourglass.out_filters,
                                self.hourglass.out_filters,
                                kernel_size=3,
                                weight_attr=nn.initializer.KaimingUniform(),
                                padding=1),
                    nn.ReLU(),
                    nn.Conv2D(self.hourglass.out_filters,
                                self.hourglass.out_filters,
                                kernel_size=3,
                                weight_attr=nn.initializer.KaimingUniform(),
                                padding=1),
                    nn.ReLU(),
                    nn.Conv2D(self.hourglass.out_filters,
                                num_kp + 1,
                                kernel_size=3,
                                weight_attr=nn.initializer.KaimingUniform(),
                                padding=1))
        else:
            self.mask = nn.Conv2D(self.hourglass.out_filters,
55 56 57 58 59
                              num_kp + 1,
                              kernel_size=(7, 7),
                              padding=(3, 3))

        if estimate_occlusion_map:
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            if mobile_net:
                self.occlusion =  nn.Sequential(
                    nn.Conv2D(self.hourglass.out_filters,
                                       self.hourglass.out_filters,
                                       kernel_size=3,
                                       padding=1, 
                                       weight_attr=nn.initializer.KaimingUniform()),
                    nn.ReLU(),
                    nn.Conv2D(self.hourglass.out_filters,
                                       self.hourglass.out_filters,
                                       kernel_size=3, 
                                       weight_attr=nn.initializer.KaimingUniform(),
                                       padding=1),
                    nn.ReLU(),
                    nn.Conv2D(self.hourglass.out_filters,
                                       1,
                                       kernel_size=3,
                                       padding=1, 
                                       weight_attr=nn.initializer.KaimingUniform())
                    )
            else:
                self.occlusion = nn.Conv2D(self.hourglass.out_filters,
82 83 84 85 86 87 88 89 90 91 92 93
                                       1,
                                       kernel_size=(7, 7),
                                       padding=(3, 3))
        else:
            self.occlusion = None

        self.num_kp = num_kp
        self.scale_factor = scale_factor
        self.kp_variance = kp_variance

        if self.scale_factor != 1:
            self.down = AntiAliasInterpolation2d(num_channels,
94 95
                                                 self.scale_factor,
                                                 mobile_net=mobile_net)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    def create_heatmap_representations(self, source_image, kp_driving,
                                       kp_source):
        """
        Eq 6. in the paper H_k(z)
        """
        spatial_size = source_image.shape[2:]
        gaussian_driving = kp2gaussian(kp_driving,
                                       spatial_size=spatial_size,
                                       kp_variance=self.kp_variance)
        gaussian_source = kp2gaussian(kp_source,
                                      spatial_size=spatial_size,
                                      kp_variance=self.kp_variance)
        heatmap = gaussian_driving - gaussian_source

        #adding background feature
        zeros = paddle.zeros(
            [heatmap.shape[0], 1, spatial_size[0], spatial_size[1]],
            heatmap.dtype)  #.type(heatmap.type())
        heatmap = paddle.concat([zeros, heatmap], axis=1)
        heatmap = heatmap.unsqueeze(2)
        return heatmap

    def create_sparse_motions(self, source_image, kp_driving, kp_source):
        """
        Eq 4. in the paper T_{s<-d}(z)
        """
        bs, _, h, w = source_image.shape
        identity_grid = make_coordinate_grid((h, w),
                                             type=kp_source['value'].dtype)
        identity_grid = identity_grid.reshape([1, 1, h, w, 2])
        coordinate_grid = identity_grid - kp_driving['value'].reshape(
            [bs, self.num_kp, 1, 1, 2])
        if 'jacobian' in kp_driving:
            jacobian = paddle.matmul(kp_source['jacobian'],
                                     paddle.inverse(kp_driving['jacobian']))
            jacobian = jacobian.unsqueeze(-3).unsqueeze(-3)
F
FNRE 已提交
133 134 135 136 137 138 139
            # Todo: fix bug of paddle.tile
            p_jacobian = jacobian.reshape([bs, self.num_kp, 1, 1, 4])
            paddle_jacobian = paddle.tile(p_jacobian, [1, 1, h, w, 1])
            paddle_jacobian = paddle_jacobian.reshape(
                [bs, self.num_kp, h, w, 2, 2])

            coordinate_grid = paddle.matmul(paddle_jacobian,
140
                                            coordinate_grid.unsqueeze(-1))
F
FNRE 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            coordinate_grid = coordinate_grid.squeeze(-1)

        driving_to_source = coordinate_grid + kp_source['value'].reshape(
            [bs, self.num_kp, 1, 1, 2])

        #adding background feature
        identity_grid = paddle.tile(identity_grid, (bs, 1, 1, 1, 1))
        sparse_motions = paddle.concat([identity_grid, driving_to_source],
                                       axis=1)
        return sparse_motions

    def create_deformed_source_image(self, source_image, sparse_motions):
        """
        Eq 7. in the paper \hat{T}_{s<-d}(z)
        """
        bs, _, h, w = source_image.shape
        source_repeat = paddle.tile(
            source_image.unsqueeze(1).unsqueeze(1),
            [1, self.num_kp + 1, 1, 1, 1, 1
             ])  #.repeat(1, self.num_kp + 1, 1, 1, 1, 1)
        source_repeat = source_repeat.reshape(
            [bs * (self.num_kp + 1), -1, h, w])
        sparse_motions = sparse_motions.reshape(
            (bs * (self.num_kp + 1), h, w, -1))
        sparse_deformed = F.grid_sample(source_repeat,
                                        sparse_motions,
F
FNRE 已提交
168 169 170
                                        mode='bilinear',
                                        padding_mode='zeros',
                                        align_corners=True)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        sparse_deformed = sparse_deformed.reshape(
            (bs, self.num_kp + 1, -1, h, w))
        return sparse_deformed

    def forward(self, source_image, kp_driving, kp_source):
        if self.scale_factor != 1:
            source_image = self.down(source_image)

        bs, _, h, w = source_image.shape

        out_dict = dict()
        heatmap_representation = self.create_heatmap_representations(
            source_image, kp_driving, kp_source)
        sparse_motion = self.create_sparse_motions(source_image, kp_driving,
                                                   kp_source)
        deformed_source = self.create_deformed_source_image(
            source_image, sparse_motion)
        out_dict['sparse_deformed'] = deformed_source

L
lzzyzlbb 已提交
190 191
        temp = paddle.concat([heatmap_representation, deformed_source], axis=2)
        temp = temp.reshape([bs, -1, h, w])
192

L
lzzyzlbb 已提交
193
        prediction = self.hourglass(temp)
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

        mask = self.mask(prediction)
        mask = F.softmax(mask, axis=1)
        out_dict['mask'] = mask
        mask = mask.unsqueeze(2)
        sparse_motion = sparse_motion.transpose([0, 1, 4, 2, 3])
        deformation = (sparse_motion * mask).sum(axis=1)
        deformation = deformation.transpose([0, 2, 3, 1])

        out_dict['deformation'] = deformation

        # Sec. 3.2 in the paper
        if self.occlusion:
            occlusion_map = F.sigmoid(self.occlusion(prediction))
            out_dict['occlusion_map'] = occlusion_map

        return out_dict