run_benchmark.sh 2.1 KB
Newer Older
L
lzzyzlbb 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#!/usr/bin/env bash
set -xe
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
# 参数说明
function _set_params(){
    run_mode=${1:-"sp"}          # 单卡sp|多卡mp
    batch_size=${2:-"64"}
    fp_item=${3:-"fp32"}        # fp32|fp16
    mode=${4:-"epochs"}
    max_iter=${5:-"500"}       # 可选,如果需要修改代码提前中断
    model_name=${6:-"model_name"}
    config=${7:-"config"}
    log_interval=${8:-"1"}
    run_log_path=${TRAIN_LOG_DIR:-$(pwd)}  # TRAIN_LOG_DIR 后续QA设置该参数

#   以下不用修改
    device=${CUDA_VISIBLE_DEVICES//,/ }
    arr=(${device})
    num_gpu_devices=${#arr[*]}
    log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
L
lzzyzlbb 已提交
21
    res_log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}_speed
L
lzzyzlbb 已提交
22
}
L
lzzyzlbb 已提交
23 24 25 26 27

function _analysis_log(){
    python benchmark/analysis_log.py ${model_name} ${log_file} ${res_log_file}
}

L
lzzyzlbb 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
function _train(){
    echo "Train on ${num_gpu_devices} GPUs"
    echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"

    train_cmd="--config-file=${config}
               -o dataset.train.batch_size=${batch_size}
               log_config.interval=${log_interval}
               ${mode}=${max_iter} "
    case ${run_mode} in
    sp) train_cmd="python -u tools/main.py "${train_cmd} ;;
    mp)
        train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/main.py "${train_cmd}
        log_parse_file="mylog/workerlog.0" ;;
    *) echo "choose run_mode(sp or mp)"; exit 1;
    esac
# 以下不用修改
    timeout 15m ${train_cmd} > ${log_file} 2>&1
    if [ $? -ne 0 ];then
        echo -e "${model_name}, FAIL"
        export job_fail_flag=1
    else
        echo -e "${model_name}, SUCCESS"
        export job_fail_flag=0
    fi
    trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM

    if [ $run_mode = "mp" -a -d mylog ]; then
        rm ${log_file}
        cp mylog/workerlog.0 ${log_file}
    fi
L
lzzyzlbb 已提交
58 59 60

    _analysis_log
    
L
lzzyzlbb 已提交
61 62 63 64
}

_set_params $@
_train