first_order_predictor.py 13.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import sys
17 18
import cv2
import math
L
LielinJiang 已提交
19 20 21 22 23 24 25 26 27

import yaml
import pickle
import imageio
import numpy as np
from tqdm import tqdm
from scipy.spatial import ConvexHull

import paddle
L
LielinJiang 已提交
28
from ppgan.utils.download import get_path_from_url
L
LielinJiang 已提交
29 30 31
from ppgan.utils.animate import normalize_kp
from ppgan.modules.keypoint_detector import KPDetector
from ppgan.models.generators.occlusion_aware import OcclusionAwareGenerator
32
from ppgan.faceutils import face_detection
L
LielinJiang 已提交
33 34 35 36 37 38 39 40 41 42 43

from .base_predictor import BasePredictor

class FirstOrderPredictor(BasePredictor):
    def __init__(self,
                 output='output',
                 weight_path=None,
                 config=None,
                 relative=False,
                 adapt_scale=False,
                 find_best_frame=False,
44
                 best_frame=None,
45
                 ratio=1.0,
L
lijianshe02 已提交
46
                 filename='result.mp4',
F
FNRE 已提交
47
                 face_detector='sfd',
48 49
                 multi_person=False,
                 image_size = 256):
L
LielinJiang 已提交
50
        if config is not None and isinstance(config, str):
F
FNRE 已提交
51 52
            with open(config) as f:
                self.cfg = yaml.load(f, Loader=yaml.SafeLoader)
L
LielinJiang 已提交
53 54 55 56
        elif isinstance(config, dict):
            self.cfg = config
        elif config is None:
            self.cfg = {
F
FNRE 已提交
57
                'model': {
L
LielinJiang 已提交
58 59 60 61 62
                    'common_params': {
                        'num_kp': 10,
                        'num_channels': 3,
                        'estimate_jacobian': True
                    },
F
FNRE 已提交
63 64 65 66
                    'generator': {
                        'kp_detector_cfg': {
                            'temperature': 0.1,
                            'block_expansion': 32,
L
LielinJiang 已提交
67
                            'max_features': 1024,
F
FNRE 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
                            'scale_factor': 0.25,
                            'num_blocks': 5
                        },
                        'generator_cfg': {
                            'block_expansion': 64,
                            'max_features': 512,
                            'num_down_blocks': 2,
                            'num_bottleneck_blocks': 6,
                            'estimate_occlusion_map': True,
                            'dense_motion_params': {
                                'block_expansion': 64,
                                'max_features': 1024,
                                'num_blocks': 5,
                                'scale_factor': 0.25
                            }
L
LielinJiang 已提交
83 84 85 86
                        }
                    }
                }
            }
87
            self.image_size = image_size
L
LielinJiang 已提交
88
            if weight_path is None:
89 90 91 92
                if self.image_size == 512:
                    vox_cpk_weight_url = 'https://paddlegan.bj.bcebos.com/applications/first_order_model/vox-cpk-512.pdparams'
                else:
                    vox_cpk_weight_url = 'https://paddlegan.bj.bcebos.com/applications/first_order_model/vox-cpk.pdparams'
L
LielinJiang 已提交
93
                weight_path = get_path_from_url(vox_cpk_weight_url)
L
LielinJiang 已提交
94 95

        self.weight_path = weight_path
96 97
        if not os.path.exists(output):
            os.makedirs(output)
L
LielinJiang 已提交
98
        self.output = output
99
        self.filename = filename
L
LielinJiang 已提交
100 101 102 103
        self.relative = relative
        self.adapt_scale = adapt_scale
        self.find_best_frame = find_best_frame
        self.best_frame = best_frame
104
        self.ratio = ratio
L
lijianshe02 已提交
105
        self.face_detector = face_detector
L
LielinJiang 已提交
106 107
        self.generator, self.kp_detector = self.load_checkpoints(
            self.cfg, self.weight_path)
F
FNRE 已提交
108
        self.multi_person = multi_person
109
        
L
LielinJiang 已提交
110

F
FNRE 已提交
111 112 113 114 115 116 117 118 119
    def read_img(self, path):
        img = imageio.imread(path)
        if img.ndim == 2:
            img = np.expand_dims(img, axis=2)
        # som images have 4 channels
        if img.shape[2] > 3:
            img = img[:,:,:3]
        return img

L
LielinJiang 已提交
120
    def run(self, source_image, driving_video):
F
FNRE 已提交
121
        def get_prediction(face_image):
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            if self.find_best_frame or self.best_frame is not None:
                i = self.best_frame if self.best_frame is not None else self.find_best_frame_func(
                    source_image, driving_video)

                print("Best frame: " + str(i))
                driving_forward = driving_video[i:]
                driving_backward = driving_video[:(i + 1)][::-1]
                predictions_forward = self.make_animation(
                    face_image,
                    driving_forward,
                    self.generator,
                    self.kp_detector,
                    relative=self.relative,
                    adapt_movement_scale=self.adapt_scale)
                predictions_backward = self.make_animation(
                    face_image,
                    driving_backward,
                    self.generator,
                    self.kp_detector,
                    relative=self.relative,
                    adapt_movement_scale=self.adapt_scale)
                predictions = predictions_backward[::-1] + predictions_forward[
                    1:]
            else:
                predictions = self.make_animation(
                    face_image,
                    driving_video,
                    self.generator,
                    self.kp_detector,
                    relative=self.relative,
                    adapt_movement_scale=self.adapt_scale)
F
FNRE 已提交
153
            return predictions
154

F
FNRE 已提交
155
        source_image = self.read_img(source_image)
F
FNRE 已提交
156 157 158 159 160 161 162
        reader = imageio.get_reader(driving_video)
        fps = reader.get_meta_data()['fps']
        driving_video = []
        try:
            for im in reader:
                driving_video.append(im)
        except RuntimeError:
F
FNRE 已提交
163
            print("Read driving video error!")
F
FNRE 已提交
164 165 166 167
            pass
        reader.close()

        driving_video = [
168
            cv2.resize(frame, (self.image_size, self.image_size)) / 255.0 for frame in driving_video
F
FNRE 已提交
169 170 171
        ]
        results = []

172
        
F
FNRE 已提交
173 174
        bboxes = self.extract_bbox(source_image.copy())
        print(str(len(bboxes)) + " persons have been detected")
175
        
F
FNRE 已提交
176 177 178 179

        # for multi person
        for rec in bboxes:
            face_image = source_image.copy()[rec[1]:rec[3], rec[0]:rec[2]]
180
            face_image = cv2.resize(face_image, (self.image_size, self.image_size)) / 255.0
F
FNRE 已提交
181
            predictions = get_prediction(face_image)
182
            results.append({'rec': rec, 'predict': predictions})
183 184
            if len(bboxes) == 1 or not self.multi_person:
                break
185
        out_frame = []
186

187 188 189
        for i in range(len(driving_video)):
            frame = source_image.copy()
            for result in results:
F
FNRE 已提交
190
                x1, y1, x2, y2, _ = result['rec']
191 192 193
                h = y2 - y1
                w = x2 - x1
                out = result['predict'][i] * 255.0
194 195 196
                #from ppgan.apps import RealSRPredictor
                #sr = RealSRPredictor()
                #sr_img = sr.run(out.astype(np.uint8))
197
                out = cv2.resize(out.astype(np.uint8), (x2 - x1, y2 - y1))
198
                #out = cv2.resize(np.array(sr_img).astype(np.uint8), (x2 - x1, y2 - y1))
199
                if len(results) == 1:
200
                    #imageio.imwrite(os.path.join(self.output, "blending_512_realsr","source"+str(i) + ".png"), frame)
201
                    frame[y1:y2, x1:x2] = out
202 203 204 205 206
                    #imageio.imwrite(os.path.join(self.output, "blending_512_realsr","target"+str(i) + ".png"), frame)                    
                    #mask = np.ones(frame.shape).astype('uint8') * 255
                    #mask[y1:y2, x1:x2] = (0,0,0)
                    #imageio.imwrite(os.path.join(self.output, "blending_512_realsr","mask"+str(i) + ".png"), mask)
                    
207 208 209 210 211 212 213 214 215
                else:
                    patch = np.zeros(frame.shape).astype('uint8')
                    patch[y1:y2, x1:x2] = out
                    mask = np.zeros(frame.shape[:2]).astype('uint8')
                    cx = int((x1 + x2) / 2)
                    cy = int((y1 + y2) / 2)
                    cv2.circle(mask, (cx, cy), math.ceil(h * self.ratio),
                               (255, 255, 255), -1, 8, 0)
                    frame = cv2.copyTo(patch, mask, frame)
216
           
217
            out_frame.append(frame)
218
        imageio.mimsave(os.path.join(self.output, self.filename),
219 220
                        [frame for frame in out_frame],
                        fps=fps)
L
LielinJiang 已提交
221 222 223 224

    def load_checkpoints(self, config, checkpoint_path):

        generator = OcclusionAwareGenerator(
F
FNRE 已提交
225 226
            **config['model']['generator']['generator_cfg'],
            **config['model']['common_params'])
L
LielinJiang 已提交
227

F
FNRE 已提交
228 229 230
        kp_detector = KPDetector(
            **config['model']['generator']['kp_detector_cfg'],
            **config['model']['common_params'])
L
LielinJiang 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

        checkpoint = paddle.load(self.weight_path)
        generator.set_state_dict(checkpoint['generator'])

        kp_detector.set_state_dict(checkpoint['kp_detector'])

        generator.eval()
        kp_detector.eval()

        return generator, kp_detector

    def make_animation(self,
                       source_image,
                       driving_video,
                       generator,
                       kp_detector,
                       relative=True,
                       adapt_movement_scale=True):
        with paddle.no_grad():
            predictions = []
            source = paddle.to_tensor(source_image[np.newaxis].astype(
                np.float32)).transpose([0, 3, 1, 2])

            driving = paddle.to_tensor(
                np.array(driving_video)[np.newaxis].astype(
                    np.float32)).transpose([0, 4, 1, 2, 3])
            kp_source = kp_detector(source)
            kp_driving_initial = kp_detector(driving[:, :, 0])

            for frame_idx in tqdm(range(driving.shape[2])):
                driving_frame = driving[:, :, frame_idx]
                kp_driving = kp_detector(driving_frame)
                kp_norm = normalize_kp(
                    kp_source=kp_source,
                    kp_driving=kp_driving,
                    kp_driving_initial=kp_driving_initial,
                    use_relative_movement=relative,
                    use_relative_jacobian=relative,
                    adapt_movement_scale=adapt_movement_scale)
                out = generator(source, kp_source=kp_source, kp_driving=kp_norm)

                predictions.append(
                    np.transpose(out['prediction'].numpy(), [0, 2, 3, 1])[0])
        return predictions

    def find_best_frame_func(self, source, driving):
        import face_alignment

        def normalize_kp(kp):
            kp = kp - kp.mean(axis=0, keepdims=True)
            area = ConvexHull(kp[:, :2]).volume
            area = np.sqrt(area)
            kp[:, :2] = kp[:, :2] / area
            return kp

        fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,
                                          flip_input=True)

        kp_source = fa.get_landmarks(255 * source)[0]
        kp_source = normalize_kp(kp_source)
        norm = float('inf')
        frame_num = 0
        for i, image in tqdm(enumerate(driving)):
            kp_driving = fa.get_landmarks(255 * image)[0]
            kp_driving = normalize_kp(kp_driving)
            new_norm = (np.abs(kp_source - kp_driving)**2).sum()
            if new_norm < norm:
                norm = new_norm
                frame_num = i
        return frame_num
301 302 303

    def extract_bbox(self, image):
        detector = face_detection.FaceAlignment(
L
lijianshe02 已提交
304 305 306
            face_detection.LandmarksType._2D,
            flip_input=False,
            face_detector=self.face_detector)
307 308 309

        frame = [image]
        predictions = detector.get_detections_for_image(np.array(frame))
F
FNRE 已提交
310 311 312
        person_num = len(predictions)
        if person_num == 0:
            return np.array([])
313
        results = []
F
FNRE 已提交
314
        face_boxs = []
315 316 317 318 319 320 321 322
        h, w, _ = image.shape
        for rect in predictions:
            bh = rect[3] - rect[1]
            bw = rect[2] - rect[0]
            cy = rect[1] + int(bh / 2)
            cx = rect[0] + int(bw / 2)
            margin = max(bh, bw)
            y1 = max(0, cy - margin)
323
            x1 = max(0, cx - int(0.8 * margin))
324
            y2 = min(h, cy + margin)
325
            x2 = min(w, cx + int(0.8 * margin))
F
FNRE 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
            area = (y2 - y1) * (x2 - x1)
            results.append([x1, y1, x2, y2, area])
        # if a person has more than one bbox, keep the largest one
        # maybe greedy will be better?
        sorted(results, key=lambda area: area[4], reverse=True)
        results_box = [results[0]]
        for i in range(1, person_num):
            num = len(results_box)
            add_person = True
            for j in range(num):
                pre_person = results_box[j]
                iou = self.IOU(pre_person[0], pre_person[1], pre_person[2],
                               pre_person[3], pre_person[4], results[i][0],
                               results[i][1], results[i][2], results[i][3],
                               results[i][4])
                if iou > 0.5:
                    add_person = False
                    break
            if add_person:
                results_box.append(results[i])
        boxes = np.array(results_box)
347
        return boxes
F
FNRE 已提交
348 349 350 351 352 353 354 355 356 357 358 359

    def IOU(self, ax1, ay1, ax2, ay2, sa, bx1, by1, bx2, by2, sb):
        #sa = abs((ax2 - ax1) * (ay2 - ay1))
        #sb = abs((bx2 - bx1) * (by2 - by1))
        x1, y1 = max(ax1, bx1), max(ay1, by1)
        x2, y2 = min(ax2, bx2), min(ay2, by2)
        w = x2 - x1
        h = y2 - y1
        if w < 0 or h < 0:
            return 0.0
        else:
            return 1.0 * w * h / (sa + sb - w * h)