dcn.py 6.3 KB
Newer Older
W
wangna11BD 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from paddle.fluid.layers import deformable_conv
from paddle.fluid import core, layers
from paddle.fluid.layers import nn, utils
from paddle.nn import Layer
from paddle.fluid.initializer import Normal
from paddle.common_ops_import import *


class DeformConv2D(Layer):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 deformable_groups=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None):
        super(DeformConv2D, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._deformable_groups = deformable_groups
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self.padding = padding
        self.stride = stride
        self._channel_dim = 1

        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, 2, 'kernel_size')

        if in_channels % groups != 0:
            raise ValueError("in_channels must be divisible by groups.")

        self._padding = utils.convert_to_list(padding, 2, 'padding')

        filter_shape = [out_channels, in_channels // groups] + self._kernel_size

        def _get_default_param_initializer():
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self.weight = self.create_parameter(
            shape=filter_shape,
            attr=self._weight_attr,
            default_initializer=_get_default_param_initializer())
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

    def forward(self, x, offset, mask):
        out = deform_conv2d(
            x=x,
            offset=offset,
            mask=mask,
            weight=self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._padding,
            dilation=self._dilation,
            deformable_groups=self._deformable_groups,
            groups=self._groups,
            )
        return out


def deform_conv2d(x,
                  offset,
                  weight,
                  mask,
                  bias=None,
                  stride=1,
                  padding=0,
                  dilation=1,
                  deformable_groups=1,
                  groups=1,
                  name=None):
    
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    use_deform_conv2d_v1 = True if mask is None else False

    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation, 'deformable_groups',deformable_groups,
                 'groups', groups, 'im2col_step', 1)
        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
            pre_bias = getattr(core.ops, op_type)(x, offset, weight, *attrs)
        else:
            op_type = 'deformable_conv'
            pre_bias = getattr(core.ops, op_type)(x, offset, mask, weight,
                                                  *attrs)
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    else:
        helper = LayerHelper('deform_conv2d', **locals())
        attrs = {'strides': stride, 'paddings': padding, 'dilations': dilation, 'deformable_groups': deformable_groups,
                 'groups': groups, 'im2col_step': 1}
        if use_deform_conv2d_v1:
            op_type = 'deformable_conv_v1'
            inputs = {'Input': x, 'Offset': offset, 'Filter': weight}
        else:
            op_type = 'deformable_conv'
            inputs = {'Input': x, 'Offset': offset,
                      'Mask': mask, 'Filter': weight}

        pre_bias = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type=op_type, inputs=inputs, outputs={
                         'Output': pre_bias}, attrs=attrs)

        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=1)
        else:
            out = pre_bias
W
wangna11BD 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    return out


class DeformableConv_dygraph(Layer):
    def __init__(self,num_filters,filter_size,dilation,
                 stride,padding,deformable_groups=1,groups=1):
        super(DeformableConv_dygraph, self).__init__()
        self.num_filters = num_filters
        self.filter_size = filter_size
        self.dilation = dilation
        self.stride = stride
        self.padding = padding
        self.deformable_groups = deformable_groups
        self.groups = groups
        self.defor_conv = DeformConv2D(in_channels=self.num_filters, out_channels=self.num_filters, 
                                                           kernel_size=self.filter_size, stride=self.stride, padding=self.padding, 
                                                           dilation=self.dilation, deformable_groups=self.deformable_groups, groups=self.groups, weight_attr=None, bias_attr=None)


    def forward(self,*input):
        x = input[0]
        offset = input[1]
        mask = input[2]
        out = self.defor_conv(x, offset, mask)
        return out