animeganv2_model.py 8.4 KB
Newer Older
郑启航 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
from paddle import nn

from .base_model import BaseModel
from .builder import MODELS
from .generators.builder import build_generator
from .discriminators.builder import build_discriminator
from .losses import GANLoss
from ..modules.caffevgg import CaffeVGG19
from ..solver import build_optimizer
from ..modules.init import init_weights
from ..utils.filesystem import load


@MODELS.register()
class AnimeGANV2Model(BaseModel):
    def __init__(self, cfg):
        """Initialize the AnimeGANV2 class.

        Parameters:
            opt (config dict)-- stores all the experiment flags; needs to be a subclass of Dict
        """
        super(AnimeGANV2Model, self).__init__(cfg)
        # define networks (both generator and discriminator)
        self.nets['netG'] = build_generator(cfg.model.generator)
        init_weights(self.nets['netG'])

        # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
        if self.is_train:
            self.nets['netD'] = build_discriminator(cfg.model.discriminator)
            init_weights(self.nets['netD'])

            self.pretrained = CaffeVGG19()

            self.losses = {}
            # define loss functions
            self.criterionGAN = GANLoss(cfg.model.gan_mode)
            self.criterionL1 = nn.L1Loss()
            self.criterionHub = nn.SmoothL1Loss()

            # build optimizers
            self.build_lr_scheduler()
            self.optimizers['optimizer_G'] = build_optimizer(
                cfg.optimizer,
                self.lr_scheduler,
                parameter_list=self.nets['netG'].parameters())
            self.optimizers['optimizer_D'] = build_optimizer(
                cfg.optimizer,
                self.lr_scheduler,
                parameter_list=self.nets['netD'].parameters())

            if self.cfg.pretrain_ckpt:
                state_dicts = load(self.cfg.pretrain_ckpt)
                self.nets['netG'].set_state_dict(state_dicts['netG'])
                print('Load pretrained generator from', self.cfg.pretrain_ckpt)

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        """
        if self.is_train:
            self.real = paddle.to_tensor(input['real'])
            self.anime = paddle.to_tensor(input['anime'])
            self.anime_gray = paddle.to_tensor(input['anime_gray'])
            self.smooth_gray = paddle.to_tensor(input['smooth_gray'])
        else:
            self.real = paddle.to_tensor(input['A'])
            self.image_paths = input['A_paths']

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.fake = self.nets['netG'](self.real)  # G(A)

        # put items to visual dict
        self.visual_items['real'] = self.real
        self.visual_items['fake'] = self.fake

    def test(self):
        self.fake = self.nets['netG'](self.real)  # G(A)

        # put items to visual dict
        self.visual_items['real'] = self.real
        self.visual_items['fake'] = self.fake

    @staticmethod
    def gram(x):
        b, c, h, w = x.shape
        x_tmp = x.reshape((b, c, (h * w)))
        gram = paddle.matmul(x_tmp, x_tmp, transpose_y=True)
        return gram / (c * h * w)

    def style_loss(self, style, fake):
        return self.criterionL1(self.gram(style), self.gram(fake))

    def con_sty_loss(self, real, anime, fake):
        real_feature_map = self.pretrained(real)
        fake_feature_map = self.pretrained(fake)
        anime_feature_map = self.pretrained(anime)

        c_loss = self.criterionL1(real_feature_map, fake_feature_map)
        s_loss = self.style_loss(anime_feature_map, fake_feature_map)

        return c_loss, s_loss

    @staticmethod
    def rgb2yuv(rgb):
        kernel = paddle.to_tensor([[0.299, -0.14714119, 0.61497538],
                                   [0.587, -0.28886916, -0.51496512],
                                   [0.114, 0.43601035, -0.10001026]],
                                  dtype='float32')
        rgb = paddle.transpose(rgb, (0, 2, 3, 1))
        yuv = paddle.matmul(rgb, kernel)
        return yuv

    @staticmethod
    def denormalize(image):
        return image * 0.5 + 0.5

    def color_loss(self, con, fake):
        con = self.rgb2yuv(self.denormalize(con))
        fake = self.rgb2yuv(self.denormalize(fake))
        return (self.criterionL1(con[:, :, :, 0], fake[:, :, :, 0]) +
                self.criterionHub(con[:, :, :, 1], fake[:, :, :, 1]) +
                self.criterionHub(con[:, :, :, 2], fake[:, :, :, 2]))

    @staticmethod
    def variation_loss(image, ksize=1):
        dh = image[:, :, :-ksize, :] - image[:, :, ksize:, :]
        dw = image[:, :, :, :-ksize] - image[:, :, :, ksize:]
        return (paddle.mean(paddle.abs(dh)) + paddle.mean(paddle.abs(dw)))

    def backward_D(self):
        """Calculate GAN loss for the discriminator"""
        # Fake; stop backprop to the generator by detaching fake_B
        # use conditional GANs; we need to feed both input and output to the discriminator
        real_logit = self.nets['netD'](self.anime)
        gray_logit = self.nets['netD'](self.anime_gray)
        fake_logit = self.nets['netD'](self.fake.detach())
        smooth_logit = self.nets['netD'](self.smooth_gray)

        d_real_loss = (self.cfg.d_adv_weight * 1.2 *
                       self.criterionGAN(real_logit, True))
        d_gray_loss = (self.cfg.d_adv_weight * 1.2 *
                       self.criterionGAN(gray_logit, False))
        d_fake_loss = (self.cfg.d_adv_weight * 1.2 *
                       self.criterionGAN(fake_logit, False))
        d_blur_loss = (self.cfg.d_adv_weight * 0.8 *
                       self.criterionGAN(smooth_logit, False))

        self.loss_D = d_real_loss + d_gray_loss + d_fake_loss + d_blur_loss

        self.loss_D.backward()

        self.losses['d_loss'] = self.loss_D
        self.losses['d_real_loss'] = d_real_loss
        self.losses['d_fake_loss'] = d_fake_loss
        self.losses['d_gray_loss'] = d_gray_loss
        self.losses['d_blur_loss'] = d_blur_loss

    def backward_G(self):
        fake_logit = self.nets['netD'](self.fake)
        c_loss, s_loss = self.con_sty_loss(self.real, self.anime_gray,
                                           self.fake)
        c_loss = self.cfg.con_weight * c_loss
        s_loss = self.cfg.sty_weight * s_loss
        tv_loss = self.cfg.tv_weight * self.variation_loss(self.fake)
        col_loss = self.cfg.color_weight * self.color_loss(self.real, self.fake)
        g_loss = (self.cfg.g_adv_weight * self.criterionGAN(fake_logit, True))

        self.loss_G = c_loss + s_loss + col_loss + g_loss + tv_loss

        self.loss_G.backward()

        self.losses['g_loss'] = self.loss_G
        self.losses['c_loss'] = c_loss
        self.losses['s_loss'] = s_loss
        self.losses['col_loss'] = col_loss
        self.losses['tv_loss'] = tv_loss

    def optimize_parameters(self):
        # compute fake images: G(A)
        self.forward()

        # update D
        self.optimizers['optimizer_D'].clear_grad()
        self.backward_D()
        self.optimizers['optimizer_D'].step()

        # update G
        self.optimizers['optimizer_G'].clear_grad()
        self.backward_G()
        self.optimizers['optimizer_G'].step()


@MODELS.register()
class AnimeGANV2PreTrainModel(AnimeGANV2Model):
    def backward_G(self):
        real_feature_map = self.pretrained(self.real)
        fake_feature_map = self.pretrained(self.fake)
        init_c_loss = self.criterionL1(real_feature_map, fake_feature_map)
        loss = self.cfg.con_weight * init_c_loss
        loss.backward()
        self.losses['init_c_loss'] = init_c_loss

    def optimize_parameters(self):
        self.forward()
        # update G
        self.optimizers['optimizer_G'].clear_grad()
        self.backward_G()
        self.optimizers['optimizer_G'].step()