dain_predictor.py 9.6 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import cv2
Q
qingqing01 已提交
17 18 19
import glob
import shutil
import numpy as np
L
LielinJiang 已提交
20
from tqdm import tqdm
Q
qingqing01 已提交
21 22
from imageio import imread, imsave

L
LielinJiang 已提交
23
import paddle
Q
qingqing01 已提交
24
import paddle.fluid as fluid
L
LielinJiang 已提交
25
from ppgan.utils.download import get_path_from_url
L
LielinJiang 已提交
26 27 28 29 30 31 32 33 34
from ppgan.utils.video import video2frames, frames2video

from .base_predictor import BasePredictor

DAIN_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/applications/DAIN_weight.tar'


class DAINPredictor(BasePredictor):
    def __init__(self,
35
                 output='output',
L
LielinJiang 已提交
36 37 38
                 weight_path=None,
                 time_step=None,
                 use_gpu=True,
L
LielinJiang 已提交
39
                 remove_duplicates=False):
40
        self.output_path = os.path.join(output, 'DAIN')
L
LielinJiang 已提交
41
        if weight_path is None:
L
LielinJiang 已提交
42
            weight_path = get_path_from_url(DAIN_WEIGHT_URL)
L
LielinJiang 已提交
43 44 45

        self.weight_path = weight_path
        self.time_step = time_step
46
        self.key_frame_thread = 0
L
LielinJiang 已提交
47
        self.remove_duplicates = remove_duplicates
L
LielinJiang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

        self.build_inference_model()

    def run(self, video_path):
        frame_path_input = os.path.join(self.output_path, 'frames-input')
        frame_path_interpolated = os.path.join(self.output_path,
                                               'frames-interpolated')
        frame_path_combined = os.path.join(self.output_path, 'frames-combined')
        video_path_output = os.path.join(self.output_path, 'videos-output')

        if not os.path.exists(self.output_path):
            os.makedirs(self.output_path)
        if not os.path.exists(frame_path_input):
            os.makedirs(frame_path_input)
        if not os.path.exists(frame_path_interpolated):
            os.makedirs(frame_path_interpolated)
        if not os.path.exists(frame_path_combined):
            os.makedirs(frame_path_combined)
        if not os.path.exists(video_path_output):
            os.makedirs(video_path_output)

        timestep = self.time_step
        num_frames = int(1.0 / timestep) - 1
Q
qingqing01 已提交
71

L
LielinJiang 已提交
72
        cap = cv2.VideoCapture(video_path)
Q
qingqing01 已提交
73 74 75 76 77 78 79
        fps = cap.get(cv2.CAP_PROP_FPS)
        print("Old fps (frame rate): ", fps)

        times_interp = int(1.0 / timestep)
        r2 = str(int(fps) * times_interp)
        print("New fps (frame rate): ", r2)

L
LielinJiang 已提交
80
        out_path = video2frames(video_path, frame_path_input)
Q
qingqing01 已提交
81

L
LielinJiang 已提交
82
        vidname = video_path.split('/')[-1].split('.')[0]
Q
qingqing01 已提交
83 84

        frames = sorted(glob.glob(os.path.join(out_path, '*.png')))
L
LielinJiang 已提交
85 86
        orig_frames = len(frames)
        need_frames = orig_frames * times_interp
Q
qingqing01 已提交
87

L
LielinJiang 已提交
88 89
        if self.remove_duplicates:
            frames = self.remove_duplicate_frames(out_path)
L
LielinJiang 已提交
90 91 92
            left_frames = len(frames)
            timestep = left_frames / need_frames
            num_frames = int(1.0 / timestep) - 1
L
LielinJiang 已提交
93

Q
qingqing01 已提交
94 95 96 97 98 99
        img = imread(frames[0])

        int_width = img.shape[1]
        int_height = img.shape[0]
        channel = img.shape[2]
        if not channel == 3:
L
LielinJiang 已提交
100
            return
Q
qingqing01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

        if int_width != ((int_width >> 7) << 7):
            int_width_pad = (((int_width >> 7) + 1) << 7)  # more than necessary
            padding_left = int((int_width_pad - int_width) / 2)
            padding_right = int_width_pad - int_width - padding_left
        else:
            int_width_pad = int_width
            padding_left = 32
            padding_right = 32

        if int_height != ((int_height >> 7) << 7):
            int_height_pad = (
                ((int_height >> 7) + 1) << 7)  # more than necessary
            padding_top = int((int_height_pad - int_height) / 2)
            padding_bottom = int_height_pad - int_height - padding_top
        else:
            int_height_pad = int_height
            padding_top = 32
            padding_bottom = 32

        frame_num = len(frames)

        if not os.path.exists(os.path.join(frame_path_interpolated, vidname)):
            os.makedirs(os.path.join(frame_path_interpolated, vidname))
        if not os.path.exists(os.path.join(frame_path_combined, vidname)):
            os.makedirs(os.path.join(frame_path_combined, vidname))

L
LielinJiang 已提交
128
        for i in tqdm(range(frame_num - 1)):
Q
qingqing01 已提交
129 130 131 132 133 134
            first = frames[i]
            second = frames[i + 1]

            img_first = imread(first)
            img_second = imread(second)
            '''--------------Frame change test------------------------'''
135 136 137 138 139 140 141 142 143
            #img_first_gray = np.dot(img_first[..., :3], [0.299, 0.587, 0.114])
            #img_second_gray = np.dot(img_second[..., :3], [0.299, 0.587, 0.114])

            #img_first_gray = img_first_gray.flatten(order='C')
            #img_second_gray = img_second_gray.flatten(order='C')
            #corr = np.corrcoef(img_first_gray, img_second_gray)[0, 1]
            #key_frame = False
            #if corr < self.key_frame_thread:
            #    key_frame = True
Q
qingqing01 已提交
144 145 146 147 148
            '''-------------------------------------------------------'''

            X0 = img_first.astype('float32').transpose((2, 0, 1)) / 255
            X1 = img_second.astype('float32').transpose((2, 0, 1)) / 255

L
LielinJiang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
            assert (X0.shape[1] == X1.shape[1])
            assert (X0.shape[2] == X1.shape[2])

            X0 = np.pad(X0, ((0,0), (padding_top, padding_bottom), \
                (padding_left, padding_right)), mode='edge')
            X1 = np.pad(X1, ((0,0), (padding_top, padding_bottom), \
                (padding_left, padding_right)), mode='edge')

            X0 = np.expand_dims(X0, axis=0)
            X1 = np.expand_dims(X1, axis=0)

            X0 = np.expand_dims(X0, axis=0)
            X1 = np.expand_dims(X1, axis=0)

            X = np.concatenate((X0, X1), axis=0)

            o = self.base_forward(X)

            y_ = o[0]

            y_ = [
                np.transpose(
                    255.0 * item.clip(
                        0, 1.0)[0, :, padding_top:padding_top + int_height,
                                padding_left:padding_left + int_width],
                    (1, 2, 0)) for item in y_
            ]
            time_offsets = [kk * timestep for kk in range(1, 1 + num_frames, 1)]

            count = 1
            for item, time_offset in zip(y_, time_offsets):
                out_dir = os.path.join(frame_path_interpolated, vidname,
                                       "{:0>6d}_{:0>4d}.png".format(i, count))
                count = count + 1
                imsave(out_dir, np.round(item).astype(np.uint8))
Q
qingqing01 已提交
184 185 186 187 188 189

        num_frames = int(1.0 / timestep) - 1

        input_dir = os.path.join(frame_path_input, vidname)
        interpolated_dir = os.path.join(frame_path_interpolated, vidname)
        combined_dir = os.path.join(frame_path_combined, vidname)
L
LielinJiang 已提交
190 191
        self.combine_frames(input_dir, interpolated_dir, combined_dir,
                            num_frames)
Q
qingqing01 已提交
192 193 194 195 196 197

        frame_pattern_combined = os.path.join(frame_path_combined, vidname,
                                              '%08d.png')
        video_pattern_output = os.path.join(video_path_output, vidname + '.mp4')
        if os.path.exists(video_pattern_output):
            os.remove(video_pattern_output)
L
LielinJiang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        frames2video(frame_pattern_combined, video_pattern_output, r2)

        return frame_pattern_combined, video_pattern_output

    def combine_frames(self, input, interpolated, combined, num_frames):
        frames1 = sorted(glob.glob(os.path.join(input, '*.png')))
        frames2 = sorted(glob.glob(os.path.join(interpolated, '*.png')))
        num1 = len(frames1)
        num2 = len(frames2)

        for i in range(num1):
            src = frames1[i]
            imgname = int(src.split('/')[-1].split('.')[-2])
            assert i == imgname
            dst = os.path.join(combined,
                               '{:08d}.png'.format(i * (num_frames + 1)))
            shutil.copy2(src, dst)
            if i < num1 - 1:
                try:
                    for k in range(num_frames):
                        src = frames2[i * num_frames + k]
                        dst = os.path.join(
                            combined,
                            '{:08d}.png'.format(i * (num_frames + 1) + k + 1))
                        shutil.copy2(src, dst)
                except Exception as e:
                    print(e)
L
LielinJiang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

    def remove_duplicate_frames(self, paths):
        def dhash(image, hash_size=8):
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            resized = cv2.resize(gray, (hash_size + 1, hash_size))
            diff = resized[:, 1:] > resized[:, :-1]
            return sum([2**i for (i, v) in enumerate(diff.flatten()) if v])

        hashes = {}
        image_paths = sorted(glob.glob(os.path.join(paths, '*.png')))
        for image_path in image_paths:
            image = cv2.imread(image_path)
            h = dhash(image)
            p = hashes.get(h, [])
            p.append(image_path)
            hashes[h] = p

        for (h, hashed_paths) in hashes.items():
            if len(hashed_paths) > 1:
                for p in hashed_paths[1:]:
                    os.remove(p)

        frames = sorted(glob.glob(os.path.join(paths, '*.png')))
        for fid, frame in enumerate(frames):
            new_name = '{:08d}'.format(fid) + '.png'
            new_name = os.path.join(paths, new_name)
            os.rename(frame, new_name)

        frames = sorted(glob.glob(os.path.join(paths, '*.png')))
        return frames