video_restore.md 5.7 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
## 老视频修复

老视频往往具有帧数少,无色彩,分辨率低等特点。于是针对这些特点,我们使用补帧,上色,超分等模型对视频进行修复。

### 使用applications中的video-enhance.py工具进行快速开始视频修复
```
cd applications
python tools/video-enhance.py --input you_video_path.mp4 --proccess_order DAIN DeOldify EDVR --output output_dir
```
#### 参数

- `--input (str)`: 输入的视频路径。
- `--output (str)`: 输出的视频路径。
- `--proccess_order`: 调用的模型名字和顺序,比如输入为 `DAIN DeOldify EDVR`,则会顺序调用 `DAINPredictor` `DeOldifyPredictor` `EDVRPredictor`

#### 效果展示
![](../imgs/color_sr_peking.gif)


### 快速体验
我们在ai studio制作了一个[ai studio 老北京视频修复教程](https://aistudio.baidu.com/aistudio/projectdetail/1161285)

### 注意事项

* 在使用本教程前,请确保您已经[安装完paddle和ppgan]()。

* 本教程的所有命令都基于PaddleGAN/applications主目录进行执行。

* 各个模型耗时较长,尤其使超分辨率模型,建议输入的视频分辨率低一些,时长短一些。

* 需要运行在gpu环境上

### ppgan提供的可用于视频修复的预测api简介
可以根据要修复的视频的特点,使用不同的模型与参数

### 补帧模型DAIN
DAIN 模型通过探索深度的信息来显式检测遮挡。并且开发了一个深度感知的流投影层来合成中间流。在视频补帧方面有较好的效果。
![](./imgs/dain_network.png)

```
ppgan.apps.DAINPredictor(
L
LielinJiang 已提交
42
                        output='output',
L
LielinJiang 已提交
43 44 45 46 47 48 49
                        weight_path=None,
                        time_step=None,
                        use_gpu=True,
                        remove_duplicates=False)
```
#### 参数

L
LielinJiang 已提交
50
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
L
LielinJiang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `time_step (int)`: 补帧的时间系数,如果设置为0.5,则原先为每秒30帧的视频,补帧后变为每秒60帧。
- `remove_duplicates (bool,可选的)`: 是否删除重复帧,默认值:`False`.

### 上色模型DeOldifyPredictor
DeOldify 采用自注意力机制的生成对抗网络,生成器是一个U-NET结构的网络。在图像的上色方面有着较好的效果。
![](./imgs/deoldify_network.png)

```
ppgan.apps.DeOldifyPredictor(output='output', weight_path=None, render_factor=32)
```
#### 参数

L
LielinJiang 已提交
64
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
L
LielinJiang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `render_factor (int)`: 会将该参数乘以16后作为输入帧的resize的值,如果该值设置为32,
                         则输入帧会resize到(32 * 16, 32 * 16)的尺寸再输入到网络中。

### 上色模型DeepRemasterPredictor
DeepRemaster 模型基于时空卷积神经网络和自注意力机制。并且能够根据输入的任意数量的参考帧对图片进行上色。
![](./imgs/remaster_network.png)

```
ppgan.apps.DeepRemasterPredictor(
                                output='output',
                                weight_path=None,
                                colorization=False,
                                reference_dir=None,
                                mindim=360):
```
#### 参数

L
LielinJiang 已提交
83
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
L
LielinJiang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
- `colorization (bool)`: 是否对输入视频上色,如果选项设置为 `True` ,则参考帧的文件夹路径也必须要设置。默认值:`False`
- `reference_dir (bool)`: 参考帧的文件夹路径。默认值:`None`
- `mindim (bool)`: 输入帧重新resize后的短边的大小。默认值:360。

### 超分辨率模型RealSRPredictor
RealSR模型通过估计各种模糊内核以及实际噪声分布,为现实世界的图像设计一种新颖的真实图片降采样框架。基于该降采样框架,可以获取与真实世界图像共享同一域的低分辨率图像。并且提出了一个旨在提高感知度的真实世界超分辨率模型。对合成噪声数据和真实世界图像进行的大量实验表明,该模型能够有效降低了噪声并提高了视觉质量。

![](./imgs/realsr_network.png)

```
ppgan.apps.RealSRPredictor(output='output', weight_path=None)
```
#### 参数

L
LielinJiang 已提交
99
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
L
LielinJiang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`
-
### 超分辨率模型EDVRPredictor
EDVR模型提出了一个新颖的视频具有增强可变形卷积的还原框架:第一,为了处理大动作而设计的一个金字塔,级联和可变形(PCD)对齐模块,使用可变形卷积以从粗到精的方式在特征级别完成对齐;第二,提出时空注意力机制(TSA)融合模块,在时间和空间上都融合了注意机制,用以增强复原的功能。

EDVR模型是一个基于连续帧的超分模型,能够有效利用帧间的信息,速度比RealSR模型快。

![](./imgs/edvr_network.png)

```
ppgan.apps.EDVRPredictor(output='output', weight_path=None)
```
#### 参数

L
LielinJiang 已提交
114
- `output (str,可选的)`: 输出的文件夹路径,默认值:`output`.
L
LielinJiang 已提交
115
- `weight_path (None,可选的)`: 载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:`None`