edvr_reader.py 16.8 KB
Newer Older
L
lijianshe02 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import sys
import cv2
import math
import random
import multiprocessing
import functools
import numpy as np
import paddle
import cv2
import logging
from .reader_utils import DataReader

logger = logging.getLogger(__name__)
python_ver = sys.version_info

random.seed(0)
np.random.seed(0)

class EDVRReader(DataReader):
    """
    Data reader for video super resolution task fit for EDVR model.
    This is specified for REDS dataset.
    """
    def __init__(self, name, mode, cfg):
        super(EDVRReader, self).__init__(name, mode, cfg)
        self.format = cfg.MODEL.format
        self.crop_size = self.get_config_from_sec(mode, 'crop_size')
        self.interval_list = self.get_config_from_sec(mode, 'interval_list')
        self.random_reverse = self.get_config_from_sec(mode, 'random_reverse')
        self.number_frames = self.get_config_from_sec(mode, 'number_frames')
        # set batch size and file list
        self.batch_size = cfg[mode.upper()]['batch_size']
        self.fileroot = cfg[mode.upper()]['file_root']
        self.use_flip = self.get_config_from_sec(mode, 'use_flip', False)
        self.use_rot = self.get_config_from_sec(mode, 'use_rot', False)

        self.num_reader_threads = self.get_config_from_sec(mode, 'num_reader_threads', 1)
        self.buf_size = self.get_config_from_sec(mode, 'buf_size', 1024)
        self.fix_random_seed = self.get_config_from_sec(mode, 'fix_random_seed', False)

        if self.mode != 'infer':
            self.gtroot = self.get_config_from_sec(mode, 'gt_root')
            self.scale = self.get_config_from_sec(mode, 'scale', 1)
            self.LR_input = (self.scale > 1)
        if self.fix_random_seed:
            random.seed(0)
            np.random.seed(0)
            self.num_reader_threads = 1

    def create_reader(self):
        logger.info('initialize reader ... ')
        self.filelist = []
        for video_name in os.listdir(self.fileroot):
            if (self.mode == 'train') and (video_name in ['000', '011', '015', '020']):
                continue
            for frame_name in os.listdir(os.path.join(self.fileroot, video_name)):
                frame_idx = frame_name.split('.')[0]
                video_frame_idx = video_name + '_' + frame_idx
                # for each item in self.filelist is like '010_00000015', '260_00000090'
                self.filelist.append(video_frame_idx)
        if self.mode == 'test' or self.mode == 'infer':
            self.filelist.sort()

        if self.num_reader_threads == 1:
            reader_func = make_reader
        else:
            reader_func = make_multi_reader

        if self.mode != 'infer':
            return reader_func(filelist = self.filelist,
                               num_threads = self.num_reader_threads,
                               batch_size = self.batch_size,
                               is_training = (self.mode == 'train'),
                               number_frames = self.number_frames,
                               interval_list = self.interval_list,
                               random_reverse = self.random_reverse,
                               fileroot = self.fileroot,
                               crop_size = self.crop_size,
                               use_flip = self.use_flip,
                               use_rot = self.use_rot,
                               gtroot = self.gtroot,
                               LR_input = self.LR_input,
                               scale = self.scale,
                               mode = self.mode)
        else:
            return reader_func(filelist = self.filelist,
                               num_threads = self.num_reader_threads,
                               batch_size = self.batch_size,
                               is_training = (self.mode == 'train'),
                               number_frames = self.number_frames,
                               interval_list = self.interval_list,
                               random_reverse = self.random_reverse,
                               fileroot = self.fileroot,
                               crop_size = self.crop_size,
                               use_flip = self.use_flip,
                               use_rot = self.use_rot,
                               gtroot = '',
                               LR_input = True,
                               scale = 4,
                               mode = self.mode)


def get_sample_data(item, number_frames, interval_list, random_reverse, fileroot, 
                    crop_size, use_flip, use_rot, gtroot, LR_input, scale, mode='train'):
    video_name = item.split('_')[0]
    frame_name = item.split('_')[1]
    if (mode == 'train') or (mode == 'valid'):
        ngb_frames, name_b = get_neighbor_frames(frame_name, \
                          number_frames = number_frames, \
                          interval_list = interval_list, \
                          random_reverse = random_reverse)
    elif (mode == 'test') or (mode == 'infer'):
        ngb_frames, name_b = get_test_neighbor_frames(int(frame_name), number_frames)
    else:
        raise NotImplementedError('mode {} not implemented'.format(mode))
    frame_name = name_b
    print('key2', ngb_frames, name_b)
    if mode != 'infer':
        img_GT = read_img(os.path.join(gtroot, video_name, frame_name + '.png'), is_gt=True)
    #print('gt_mean', np.mean(img_GT))
    frame_list = []
    for ngb_frm in ngb_frames:
        ngb_name = "%04d"%ngb_frm
        #img = read_img(os.path.join(fileroot, video_name, frame_name + '.png'))
        img = read_img(os.path.join(fileroot, video_name, ngb_name + '.png'))
        frame_list.append(img)
        #print('img_mean', np.mean(img))

    H, W, C = frame_list[0].shape
    # add random crop
    if (mode == 'train') or (mode == 'valid'):
        if LR_input:
            LQ_size = crop_size // scale
            rnd_h = random.randint(0, max(0, H - LQ_size))
            rnd_w = random.randint(0, max(0, W - LQ_size))
            #print('rnd_h {}, rnd_w {}', rnd_h, rnd_w)
            frame_list = [v[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] for v in frame_list]
            rnd_h_HR, rnd_w_HR = int(rnd_h * scale), int(rnd_w * scale)
            img_GT = img_GT[rnd_h_HR:rnd_h_HR + crop_size, rnd_w_HR:rnd_w_HR + crop_size, :]
        else:
            rnd_h = random.randint(0, max(0, H - crop_size))
            rnd_w = random.randint(0, max(0, W - crop_size))
            frame_list = [v[rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size, :] for v in frame_list]
            img_GT = img_GT[rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size, :]

    # add random flip and rotation
    if mode != 'infer': 
        frame_list.append(img_GT)
    if (mode == 'train') or (mode == 'valid'):
        rlt = img_augment(frame_list, use_flip, use_rot)
    else:
        rlt = frame_list
    if mode != 'infer':
        frame_list = rlt[0:-1]
        img_GT = rlt[-1]
    else:
        frame_list = rlt

    # stack LQ images to NHWC, N is the frame number
    img_LQs = np.stack(frame_list, axis=0)
    # BGR to RGB, HWC to CHW, numpy to tensor
    img_LQs = img_LQs[:, :, :, [2, 1, 0]]
    img_LQs = np.transpose(img_LQs, (0, 3, 1, 2)).astype('float32')
    if mode != 'infer':
        img_GT = img_GT[:, :, [2, 1, 0]]
        img_GT = np.transpose(img_GT, (2, 0, 1)).astype('float32')

        return img_LQs, img_GT
    else:
        return img_LQs

def get_test_neighbor_frames(crt_i, N, max_n=100, padding='new_info'):
    """Generate an index list for reading N frames from a sequence of images
    Args:
        crt_i (int): current center index
        max_n (int): max number of the sequence of images (calculated from 1)
        N (int): reading N frames
        padding (str): padding mode, one of replicate | reflection | new_info | circle
            Example: crt_i = 0, N = 5
            replicate: [0, 0, 0, 1, 2]
            reflection: [2, 1, 0, 1, 2]
            new_info: [4, 3, 0, 1, 2]
            circle: [3, 4, 0, 1, 2]

    Returns:
        return_l (list [int]): a list of indexes
    """
    max_n = max_n - 1
    n_pad = N // 2
    return_l = []

    for i in range(crt_i - n_pad, crt_i + n_pad + 1):
        if i < 0:
            if padding == 'replicate':
                add_idx = 0
            elif padding == 'reflection':
                add_idx = -i
            elif padding == 'new_info':
                add_idx = (crt_i + n_pad) + (-i)
            elif padding == 'circle':
                add_idx = N + i
            else:
                raise ValueError('Wrong padding mode')
        elif i > max_n:
            if padding == 'replicate':
                add_idx = max_n
            elif padding == 'reflection':
                add_idx = max_n * 2 - i
            elif padding == 'new_info':
                add_idx = (crt_i - n_pad) - (i - max_n)
            elif padding == 'circle':
                add_idx = i - N
            else:
                raise ValueError('Wrong padding mode')
        else:
            add_idx = i
        return_l.append(add_idx)
    name_b = '{:08d}'.format(crt_i)    
    return return_l, name_b


def get_neighbor_frames(frame_name, number_frames, interval_list, random_reverse, max_frame=99, bordermode=False):
    center_frame_idx = int(frame_name)
    half_N_frames = number_frames // 2
    #### determine the neighbor frames
    interval = random.choice(interval_list)
    if bordermode:
        direction = 1  # 1: forward; 0: backward
        if random_reverse and random.random() < 0.5:
            direction = random.choice([0, 1])
        if center_frame_idx + interval * (number_frames - 1) > max_frame:
            direction = 0
        elif center_frame_idx - interval * (number_frames - 1) < 0:
            direction = 1
        # get the neighbor list
        if direction == 1:
            neighbor_list = list(
                range(center_frame_idx, center_frame_idx + interval * number_frames, interval))
        else:
            neighbor_list = list(
                range(center_frame_idx, center_frame_idx - interval * number_frames, -interval))
        name_b = '{:08d}'.format(neighbor_list[0])
    else:
        # ensure not exceeding the borders
        while (center_frame_idx + half_N_frames * interval >
           max_frame) or (center_frame_idx - half_N_frames * interval < 0):
            center_frame_idx = random.randint(0, max_frame)
        # get the neighbor list
        neighbor_list = list(
            range(center_frame_idx - half_N_frames * interval,
                  center_frame_idx + half_N_frames * interval + 1, interval))
        if random_reverse and random.random() < 0.5:
            neighbor_list.reverse()
        name_b = '{:08d}'.format(neighbor_list[half_N_frames])
    assert len(neighbor_list) == number_frames, \
              "frames slected have length({}), but it should be ({})".format(len(neighbor_list), number_frames)

    return neighbor_list, name_b


def read_img(path, size=None, is_gt=False):
    """read image by cv2
    return: Numpy float32, HWC, BGR, [0,1]"""
    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
    #if not is_gt:
    #    #print(path)
    #    img = cv2.resize(img, (0, 0), fx=0.25, fy=0.25)
L
lijianshe02 已提交
283
    #print("path: ", path)
L
lijianshe02 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    img = img.astype(np.float32) / 255.
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
    # some images have 4 channels
    if img.shape[2] > 3:
        img = img[:, :, :3] 
    return img 


def img_augment(img_list, hflip=True, rot=True):
    """horizontal flip OR rotate (0, 90, 180, 270 degrees)"""
    hflip = hflip and random.random() < 0.5
    vflip = rot and random.random() < 0.5
    rot90 = rot and random.random() < 0.5

    def _augment(img):
        if hflip:
            img = img[:, ::-1, :]
        if vflip:
            img = img[::-1, :, :]
        if rot90:
            img = img.transpose(1, 0, 2)
        return img

    return [_augment(img) for img in img_list]


def make_reader(filelist,
                num_threads,
                batch_size,
                is_training,
                number_frames,
                interval_list,
                random_reverse,
                fileroot,
                crop_size,
                use_flip,
                use_rot,
                gtroot,
                LR_input,
                scale,
                mode='train'):
    fl = filelist
    def reader_():
        if is_training:
            random.shuffle(fl)
        batch_out = []
        for item in fl:
            if mode != 'infer':
                img_LQs, img_GT = get_sample_data(item,
                                   number_frames, interval_list, random_reverse, fileroot,
                                   crop_size,use_flip, use_rot, gtroot, LR_input, scale, mode)
            else:
                img_LQs = get_sample_data(item,
                                   number_frames, interval_list, random_reverse, fileroot,
                                   crop_size,use_flip, use_rot, gtroot, LR_input, scale, mode)
            videoname = item.split('_')[0]
            framename = item.split('_')[1]
            if (mode == 'train') or (mode == 'valid'):
                batch_out.append((img_LQs, img_GT))
            elif mode == 'test':
                batch_out.append((img_LQs, img_GT, videoname, framename))
            elif mode == 'infer':
                batch_out.append((img_LQs, videoname, framename))
            else:
                raise NotImplementedError("mode {} not implemented".format(mode))
            if len(batch_out) == batch_size:
                yield batch_out
                batch_out = []
    return reader_


def make_multi_reader(filelist,
                      num_threads,
                      batch_size,
                      is_training,
                      number_frames,
                      interval_list,
                      random_reverse,
                      fileroot,
                      crop_size,
                      use_flip,
                      use_rot,
                      gtroot,
                      LR_input,
                      scale,
                      mode='train'):
    def read_into_queue(flq, queue):
        batch_out = []
        for item in flq:
            if mode != 'infer':
                img_LQs, img_GT = get_sample_data(item,
                                   number_frames, interval_list, random_reverse, fileroot,
                                   crop_size,use_flip, use_rot, gtroot, LR_input, scale, mode)
            else:
                img_LQs = get_sample_data(item,
                                   number_frames, interval_list, random_reverse, fileroot,
                                   crop_size,use_flip, use_rot, gtroot, LR_input, scale, mode)
            videoname = item.split('_')[0]
            framename = item.split('_')[1]
            if (mode == 'train') or (mode == 'valid'):
                batch_out.append((img_LQs, img_GT))
            elif mode == 'test':
                batch_out.append((img_LQs, img_GT, videoname, framename))
            elif mode == 'infer':
                batch_out.append((img_LQs, videoname, framename))
            else:
                raise NotImplementedError("mode {} not implemented".format(mode))
            if len(batch_out) == batch_size:
                queue.put(batch_out)
                batch_out = []
        queue.put(None)


    def queue_reader():
        fl = filelist
        if is_training:
            random.shuffle(fl)

        n = num_threads
        queue_size = 20
        reader_lists = [None] * n
        file_num = int(len(fl) // n)
        for i in range(n):
            if i < len(reader_lists) - 1:
                tmp_list = fl[i * file_num:(i + 1) * file_num]
            else:
                tmp_list = fl[i * file_num:]
            reader_lists[i] = tmp_list

        queue = multiprocessing.Queue(queue_size)
        p_list = [None] * len(reader_lists)
        # for reader_list in reader_lists:
        for i in range(len(reader_lists)):
            reader_list = reader_lists[i]
            p_list[i] = multiprocessing.Process(
                target=read_into_queue, args=(reader_list, queue))
            p_list[i].start()
        reader_num = len(reader_lists)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
            else:
                yield sample
        for i in range(len(p_list)):
            if p_list[i].is_alive():
                p_list[i].join()

    return queue_reader