predict.py 10.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
import os, sys
import math
import random
import time
import glob
import shutil
import numpy as np
from imageio import imread, imsave
import cv2

import paddle.fluid as fluid

import networks
from util import *
from my_args import args


def infer_engine(model_dir,
                 run_mode='fluid',
                 batch_size=1,
                 use_gpu=False,
                 min_subgraph_size=3):
    if not use_gpu and not run_mode == 'fluid':
        raise ValueError(
            "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
            .format(run_mode, use_gpu))
    precision_map = {
        'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
        'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
    }
    config = fluid.core.AnalysisConfig(os.path.join(model_dir, 'model'),
                                       os.path.join(model_dir, 'params'))
    if use_gpu:
        # initial GPU memory(M), device ID
        config.enable_use_gpu(100, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
    else:
        config.disable_gpu()

    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(workspace_size=1 << 10,
                                      max_batch_size=batch_size,
                                      min_subgraph_size=min_subgraph_size,
                                      precision_mode=precision_map[run_mode],
                                      use_static=False,
                                      use_calib_mode=False)

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
    predictor = fluid.core.create_paddle_predictor(config)
    return predictor


def executor(model_dir, use_gpu=False):
    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=model_dir,
        executor=exe,
        model_filename='model',
        params_filename='params')
    return exe, program, fetch_targets


class VideoFrameInterp(object):
    def __init__(self,
                 time_step,
                 model_path,
                 video_path,
                 use_gpu=True,
                 key_frame_thread=0.,
                 output_path='output'):
        self.video_path = video_path
        self.output_path = output_path
        self.model_path = model_path
        self.time_step = time_step
        self.key_frame_thread = key_frame_thread

        self.exe, self.program, self.fetch_targets = executor(model_path,
                                                              use_gpu=use_gpu)
        # self.predictor = load_predictor(
        #     model_dir,
        #     run_mode=run_mode,
        #     min_subgraph_size=3,
        #     use_gpu=use_gpu)

    def run(self):
        frame_path_input = os.path.join(self.output_path, 'frames-input')
        frame_path_interpolated = os.path.join(self.output_path,
                                               'frames-interpolated')
        frame_path_combined = os.path.join(self.output_path, 'frames-combined')
        video_path_output = os.path.join(self.output_path, 'videos-output')

        if not os.path.exists(self.output_path):
            os.makedirs(self.output_path)
        if not os.path.exists(frame_path_input):
            os.makedirs(frame_path_input)
        if not os.path.exists(frame_path_interpolated):
            os.makedirs(frame_path_interpolated)
        if not os.path.exists(frame_path_combined):
            os.makedirs(frame_path_combined)
        if not os.path.exists(video_path_output):
            os.makedirs(video_path_output)

        timestep = self.time_step
        num_frames = int(1.0 / timestep) - 1

        if self.video_path.endswith('.mp4'):
            videos = [self.video_path]
        else:
            videos = sorted(glob.glob(os.path.join(self.video_path, '*.mp4')))

        for cnt, vid in enumerate(videos):
            print("Interpolating video:", vid)
            cap = cv2.VideoCapture(vid)
            fps = cap.get(cv2.CAP_PROP_FPS)
            print("Old fps (frame rate): ", fps)

            times_interp = int(1.0 / timestep)
            r2 = str(int(fps) * times_interp)
            print("New fps (frame rate): ", r2)

            out_path = dump_frames_ffmpeg(vid, frame_path_input)

            vidname = vid.split('/')[-1].split('.')[0]

            tot_timer = AverageMeter()
            proc_timer = AverageMeter()
            end = time.time()

            frames = sorted(glob.glob(os.path.join(out_path, '*.png')))

            img = imread(frames[0])

            int_width = img.shape[1]
            int_height = img.shape[0]
            channel = img.shape[2]
            if not channel == 3:
                continue

            if int_width != ((int_width >> 7) << 7):
                int_width_pad = (
                    ((int_width >> 7) + 1) << 7)  # more than necessary
                padding_left = int((int_width_pad - int_width) / 2)
                padding_right = int_width_pad - int_width - padding_left
            else:
                int_width_pad = int_width
                padding_left = 32
                padding_right = 32

            if int_height != ((int_height >> 7) << 7):
                int_height_pad = (
                    ((int_height >> 7) + 1) << 7)  # more than necessary
                padding_top = int((int_height_pad - int_height) / 2)
                padding_bottom = int_height_pad - int_height - padding_top
            else:
                int_height_pad = int_height
                padding_top = 32
                padding_bottom = 32

            frame_num = len(frames)
            print('processing {} frames, from video: {}'.format(frame_num, vid))

            if not os.path.exists(os.path.join(frame_path_interpolated,
                                               vidname)):
                os.makedirs(os.path.join(frame_path_interpolated, vidname))
            if not os.path.exists(os.path.join(frame_path_combined, vidname)):
                os.makedirs(os.path.join(frame_path_combined, vidname))

            for i in range(frame_num - 1):
                print(frames[i])
                first = frames[i]
                second = frames[i + 1]

                img_first = imread(first)
                img_second = imread(second)
                '''--------------Frame change test------------------------'''
                img_first_gray = np.dot(img_first[..., :3],
                                        [0.299, 0.587, 0.114])
                img_second_gray = np.dot(img_second[..., :3],
                                         [0.299, 0.587, 0.114])

                img_first_gray = img_first_gray.flatten(order='C')
                img_second_gray = img_second_gray.flatten(order='C')
                corr = np.corrcoef(img_first_gray, img_second_gray)[0, 1]
                key_frame = False
                if corr < self.key_frame_thread:
                    key_frame = True
                '''-------------------------------------------------------'''

                X0 = img_first.astype('float32').transpose((2, 0, 1)) / 255
                X1 = img_second.astype('float32').transpose((2, 0, 1)) / 255

                if key_frame:
                    y_ = [
                        np.transpose(255.0 * X0.clip(0, 1.0), (1, 2, 0))
                        for i in range(num_frames)
                    ]
                else:
                    assert (X0.shape[1] == X1.shape[1])
                    assert (X0.shape[2] == X1.shape[2])

                    print("size before padding ", X0.shape)
                    X0 = np.pad(X0, ((0,0), (padding_top, padding_bottom), \
                        (padding_left, padding_right)), mode='edge')
                    X1 = np.pad(X1, ((0,0), (padding_top, padding_bottom), \
                        (padding_left, padding_right)), mode='edge')
                    print("size after padding ", X0.shape)

                    X0 = np.expand_dims(X0, axis=0)
                    X1 = np.expand_dims(X1, axis=0)

                    X0 = np.expand_dims(X0, axis=0)
                    X1 = np.expand_dims(X1, axis=0)

                    X = np.concatenate((X0, X1), axis=0)

                    proc_end = time.time()
                    o = self.exe.run(self.program,
                                     fetch_list=self.fetch_targets,
                                     feed={"image": X})

                    y_ = o[0]

                    proc_timer.update(time.time() - proc_end)
                    tot_timer.update(time.time() - end)
                    end = time.time()
                    print("*********** current image process time \t " +
                          str(time.time() - proc_end) + "s *********")

                    y_ = [
                        np.transpose(
                            255.0 * item.clip(
                                0, 1.0)[0, :,
                                        padding_top:padding_top + int_height,
                                        padding_left:padding_left + int_width],
                            (1, 2, 0)) for item in y_
                    ]
                    time_offsets = [
                        kk * timestep for kk in range(1, 1 + num_frames, 1)
                    ]

                    count = 1
                    for item, time_offset in zip(y_, time_offsets):
                        out_dir = os.path.join(
                            frame_path_interpolated, vidname,
                            "{:0>4d}_{:0>4d}.png".format(i, count))
                        count = count + 1
                        imsave(out_dir, np.round(item).astype(np.uint8))

            num_frames = int(1.0 / timestep) - 1

            input_dir = os.path.join(frame_path_input, vidname)
            interpolated_dir = os.path.join(frame_path_interpolated, vidname)
            combined_dir = os.path.join(frame_path_combined, vidname)
            combine_frames(input_dir, interpolated_dir, combined_dir,
                           num_frames)

            frame_pattern_combined = os.path.join(frame_path_combined, vidname,
                                                  '%08d.png')
            video_pattern_output = os.path.join(video_path_output,
                                                vidname + '.mp4')
            if os.path.exists(video_pattern_output):
                os.remove(video_pattern_output)
            frames_to_video_ffmpeg(frame_pattern_combined, video_pattern_output,
                                   r2)


if __name__ == '__main__':
    predictor = VideoFrameInterp(args.time_step, args.saved_model,
                                 args.video_path, args.output_path)
    predictor.run()