提交 e16c8a63 编写于 作者: Q qjing666

add data_safety_training

上级 0f8b5087
##Training process
<img src='images/split_flow.png' width = "1000" height = "320" align="middle"/>
- User send a request to server including task type, image size, etc.
- Server response a path for User where it can download the Encoder.
- User encode the images and send the processed data to DB after serialization.
- Server fetch the uploaded data and start training model.
##Start the service on Server side
"""
python server/receiver.py
"""
##Start the request on User side
"""
python submitter.py
"""
import zmq
import socket
import msgpack
import os
random_port = 60001
current_ip = socket.gethostbyname(socket.gethostname())
print(current_ip)
os.system("python -m SimpleHTTPServer 8080 &")
#listening for client
context = zmq.Context()
zmq_socket = context.socket(zmq.REP)
zmq_socket.bind("tcp://{}:{}".format(current_ip, random_port))
print("binding tcp://{}:{}".format(current_ip, random_port))
#get mission and return the path of encoder
message = msgpack.loads(zmq_socket.recv())
print(message["mission"])
zmq_socket.send("user.py")
#wait client finish encoding
while True:
message = zmq_socket.recv()
if message == 'complete':
break
#start training
os.system("python -u server.py > server.log &")
from __future__ import print_function
import os
import paddle
import paddle.fluid as fluid
import numpy
import sys
from paddle.fluid import layers
import redis
import time
from paddle.fluid.param_attr import ParamAttr
import math
import msgpack
def data_generater(samples,r):
# data generater
def train_data():
for item in samples:
sample = msgpack.loads(r.get(str(item)))
conv = sample[0]
label = sample[1]
yield conv,label
return train_data
class ResNet():
def __init__(self, layers=50):
self.layers = layers
def net(self, input, class_dim=10):
layers = self.layers
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
conv = input
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act = "softmax")
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
is_first=block == i == 0,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act = "softmax")
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1')
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
def shortcut(self, input, ch_out, stride, is_first, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1 or is_first == True:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
is_first=False,
name=name + "_branch1")
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
def basic_block(self, input, num_filters, stride, is_first, name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input, num_filters, stride, is_first, name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
# local redis config
redis_host = "127.0.0.1"
redis_port = 6379
redis_password = ""
r = redis.StrictRedis(host=redis_host, port=redis_port, password=redis_password)
# reader generation
reader = fluid.layers.py_reader(capacity=64,
shapes=[(-1,64, 8, 8), (-1,1)],
dtypes=['float32', 'int64'])
samples = r.keys()
train_data = data_generater(samples,r)
reader.decorate_paddle_reader(paddle.batch(
paddle.reader.shuffle(
train_data, buf_size=5000),
batch_size=64))
conv1,label = fluid.layers.read_file(reader)
# train program
place = fluid.CUDAPlace(0)
model = ResNet(layers=50)
predicts = model.net(conv1,10)
cost = fluid.layers.cross_entropy(input=predicts, label=label)
accuracy = fluid.layers.accuracy(input=predicts, label=label)
loss = fluid.layers.mean(cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(loss)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
total_time = 0
EPOCH_NUM = 1
step = 0
train_start = time.time()
# start training
for pass_id in range(EPOCH_NUM):
reader.start()
try:
while True:
start_time = time.time()
loss_value,acc_value = exe.run(fetch_list=[loss.name,accuracy.name])
step += 1
if step % 10 == 0:
print("epoch: "+ str(pass_id)+"step: "+str(step)+"loss: "+ str(loss_value)+"acc: "+str(acc_value))
end_time = time.time()
total_time += (end_time - start_time)
except fluid.core.EOFException:
reader.reset()
train_end = time.time()
print("total time: %d" % (train_end - train_start))
print("computation time: %d" % total_time)
from __future__ import print_function
import os
import paddle
import paddle.fluid as fluid
import numpy
import sys
import redis
import time
from paddle.fluid import layers
from paddle.fluid.param_attr import ParamAttr
import msgpack
def conv_bn_layer(input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1')
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
def load_conf(conf_file, local_dict):
with open(conf_file) as fin:
for line in fin:
group = line.strip().split("=")
if len(group) != 2:
continue
local_dict[group[0]] = group[1]
return local_dict
# redis DB configuration
redis_host = "127.0.0.1"
redis_port = 6379
redis_password = ""
start_time = time.time()
# start a redis client and empty the DB
r = redis.StrictRedis(host=redis_host, port=redis_port, password=redis_password)
r.flushall()
# encoding program
images = fluid.layers.data(name='images', shape=[3,32,32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
place = fluid.CPUPlace()
conv1 = conv_bn_layer(input=images,num_filters=64,filter_size=7,stride=2,act='relu',name="conv1")
pool = fluid.layers.pool2d(input=conv1,pool_size=3,pool_stride=2,pool_padding=1,pool_type='max')
feeder = fluid.DataFeeder(place=place, feed_list=[images,label])
pretrained_model = 'ResNet50_pretrained'
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# load pretrained mode and prepare datal
def if_exist(var):
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.io.load_vars(exe, pretrained_model, main_program=fluid.default_main_program(),
predicate=if_exist)
train_data = paddle.dataset.cifar.train10()
step = 0
# start encoding and uploading
for data in train_data():
pre_data = []
pre_data.append(data)
res = exe.run(program=fluid.default_main_program(),feed=feeder.feed(pre_data), fetch_list=[pool.name])
sample = [res[0][0].tolist(),data[1]]
step += 1
file = msgpack.dumps(sample)
r.set(step,file)
if step % 100 == 0:
print(numpy.array(sample[0]).shape)
print("%dstart" % step)
files = r.keys()
print("upload file numbers: %d" % len(files))
end_time = time.time()
total_time = end_time - start_time
print("total time: %d"% total_time)
import zmq
import socket
import msgpack
import os
mission_dict = {"mission": "image classification", "image_size": [3,32,32]}
#send request
context = zmq.Context()
zmq_socket = context.socket(zmq.REQ)
zmq_socket.connect("tcp://127.0.0.1:60001")
zmq_socket.send(msgpack.dumps(mission_dict))
#get and download encoder
file = zmq_socket.recv()
os.system("wget 127.0.0.1:8080/{}".format(file))
#data encoding
os.system("python -u user.py > user.log")
zmq_socket.send("complete")
...@@ -122,7 +122,7 @@ ip_role = {} ...@@ -122,7 +122,7 @@ ip_role = {}
for i in range(len(ip_list)): for i in range(len(ip_list)):
if i < int(default_dict["server_nodes"]): if i < int(default_dict["server_nodes"]):
ip_role[ip_list[i]] = 'server%d' % i ip_role[ip_list[i]] = 'server%d' % i
else: else:
ip_role[ip_list[i]] = 'trainer%d' % (i-int(default_dict["server_nodes"])) ip_role[ip_list[i]] = 'trainer%d' % (i-int(default_dict["server_nodes"]))
print(ip_role) print(ip_role)
...@@ -190,4 +190,3 @@ while not all_job_sent: ...@@ -190,4 +190,3 @@ while not all_job_sent:
scheduler.init_env() scheduler.init_env()
print("init env done.") print("init env done.")
scheduler.start_fl_training() scheduler.start_fl_training()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册