提交 84bf2f6a 编写于 作者: J jingqinghe

fix bug and update readme

上级 f5dfd705
## Compilation and Installation
### Docker Installation
```sh
#Pull and run the docker
docker pull hub.baidubce.com/paddlefl/paddle_mpc:latest
docker run --name <docker_name> --net=host -it -v $PWD:/root <image id> /bin/bash
#Install paddle_fl
pip install paddle_fl
```
### Compile From Source Code
#### Environment preparation
* CentOS 6 or CentOS 7 (64 bit)
* Python 2.7.15+/3.5.1+/3.6/3.7 ( 64 bit) or above
* pip or pip3 9.0.1+ (64 bit)
* PaddlePaddle release 1.6.3
* Redis 5.0.8 (64 bit)
* GCC or G++ 4.8.3+
* cmake 3.15+
#### Clone the source code, compile and install
Fetch the source code and checkout stable release
```sh
git clone https://github.com/PaddlePaddle/PaddleFL
cd /path/to/PaddleFL
# Checkout stable release
mkdir build && cd build
```
Execute compile commands, where `PYTHON_EXECUTABLE` is path to the python binary where the PaddlePaddle is installed, and `PYTHON_INCLUDE_DIRS` is the corresponding python include directory. You can get the `PYTHON_INCLUDE_DIRS` via the following command:
```sh
${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import get_python_inc;print(get_python_inc())"
```
Then you can put the directory in the following command and make:
```sh
cmake ../ -DPYTHON_EXECUTABLE=${PYTHON_EXECUTABLE} -DPYTHON_INCLUDE_DIRS=${python_include_dir}
make -j$(nproc)
```
Install the package:
```sh
make install
cd /path/to/PaddleFL/python
${PYTHON_EXECUTABLE} setup.py sdist bdist_wheel
pip or pip3 install dist/***.whl -U
```
...@@ -50,69 +50,11 @@ A PE program is exactly a PaddlePaddle program, and will be executed as normal P ...@@ -50,69 +50,11 @@ A PE program is exactly a PaddlePaddle program, and will be executed as normal P
Upon completion of the secure training (or inference) job, the models (or prediction results) will be output by CPs in encrypted form. Result Parties can collect the encrypted results, decrypt them using the tools in PE, and deliver the plaintext results to users. Upon completion of the secure training (or inference) job, the models (or prediction results) will be output by CPs in encrypted form. Result Parties can collect the encrypted results, decrypt them using the tools in PE, and deliver the plaintext results to users.
## Compilation and Installation
### Docker Installation
```sh
#Pull and run the docker
docker pull hub.baidubce.com/paddlefl/paddle_mpc:latest
docker run --name <docker_name> --net=host -it -v $PWD:/root <image id> /bin/bash
#Install paddle_fl
pip install paddle_fl
```
### Compile From Source Code
#### Environment preparation
* CentOS 6 or CentOS 7 (64 bit)
* Python 2.7.15+/3.5.1+/3.6/3.7 ( 64 bit) or above
* pip or pip3 9.0.1+ (64 bit)
* PaddlePaddle release 1.6.3
* Redis 5.0.8 (64 bit)
* GCC or G++ 4.8.3+
* cmake 3.15+
#### Clone the source code, compile and install
Fetch the source code and checkout stable release
```sh
git clone https://github.com/PaddlePaddle/PaddleFL
cd /path/to/PaddleFL
# Checkout stable release
mkdir build && cd build
```
Execute compile commands, where `PYTHON_EXECUTABLE` is path to the python binary where the PaddlePaddle is installed, and `PYTHON_INCLUDE_DIRS` is the corresponding python include directory. You can get the `PYTHON_INCLUDE_DIRS` via the following command:
```sh
${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import get_python_inc;print(get_python_inc())"
```
Then you can put the directory in the following command and make:
```sh
cmake ../ -DPYTHON_EXECUTABLE=${PYTHON_EXECUTABLE} -DPYTHON_INCLUDE_DIRS=${python_include_dir}
make -j$(nproc)
```
Install the package:
```sh
make install
cd /path/to/PaddleFL/python
${PYTHON_EXECUTABLE} setup.py sdist bdist_wheel
pip or pip3 install dist/***.whl -U
```
Validate the installation by running the `python` or `python3`, then runs `import paddle_encrypted as pe` and `pe.version()`. The installation succeeds if you see `Paddle Encrypted Version: 1.0.0`.
## Example ## Example
#### Build your model #### Build your model
In Paddle Encrypted, you can build models as it is in PaddlePaddle, but using the variables and operators over encrypted data. First, prepare a training script as the example below. It is worth to note that the operators and variables are created using the `paddle.fluid_encrypted` package. In Paddle Encrypted, you can build models as it is in PaddlePaddle, but using the variables and operators over encrypted data. First, prepare a training script as the example below. It is worth to note that the operators and variables are created using the `paddle_fl.mpc` package.
```python ```python
# An example to build an LR model, named train.py (USE THE HOUSE PRICE CASE) # An example to build an LR model, named train.py (USE THE HOUSE PRICE CASE)
...@@ -127,7 +69,7 @@ role, addr, port = sys.argv[1], sys.argv[2], sys.argv[3] ...@@ -127,7 +69,7 @@ role, addr, port = sys.argv[1], sys.argv[2], sys.argv[3]
# init the MPC environment # init the MPC environment
pfl_mpc.init("aby3", (int)role, net_server_addr=addr, net_server_port=(int)port) pfl_mpc.init("aby3", (int)role, net_server_addr=addr, net_server_port=(int)port)
#data processing # data processing
BATCH_SIZE = 10 BATCH_SIZE = 10
feature_reader = aby3.load_aby3_shares("/tmp/house_feature", id=role, shape=(13, )) feature_reader = aby3.load_aby3_shares("/tmp/house_feature", id=role, shape=(13, ))
......
...@@ -86,9 +86,9 @@ step = 0 ...@@ -86,9 +86,9 @@ step = 0
for epoch_id in range(epoch_num): for epoch_id in range(epoch_num):
# feed data via loader # feed data via loader
for sample in loader(): for sample in loader():
exe.run(feed=sample) loss = exe.run(feed=sample, fetch_list=[cost.name])
if step % 50 == 0: if step % 50 == 0:
print('Epoch={}, Step={}'.format(epoch_id, step)) print('Epoch={}, Step={}, loss={}'.format(epoch_id, step, loss))
step += 1 step += 1
end_time = time.time() end_time = time.time()
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
import paddle_fl.paddle_fl as fl import paddle_fl.paddle_fl as fl
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle_fl.core.server.fl_server import FLServer from paddle_fl.paddle_fl.core.server.fl_server import FLServer
from paddle_fl.core.master.fl_job import FLRunTimeJob from paddle_fl.paddle_fl.core.master.fl_job import FLRunTimeJob
server = FLServer() server = FLServer()
server_id = 0 server_id = 0
job_path = "fl_job_config" job_path = "fl_job_config"
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
from paddle_fl.paddle_fl.core.trainer.fl_trainer import FLTrainerFactory from paddle_fl.paddle_fl.core.trainer.fl_trainer import FLTrainerFactory
from paddle_fl.paddle_fl.core.master.fl_job import FLRunTimeJob from paddle_fl.paddle_fl.core.master.fl_job import FLRunTimeJob
import paddle_fl.paddle_fl.dataset.femnist import paddle_fl.paddle_fl.dataset.femnist as femnist
import numpy import numpy
import sys import sys
import paddle import paddle
...@@ -76,7 +76,7 @@ while not trainer.stop(): ...@@ -76,7 +76,7 @@ while not trainer.stop():
#train_data,test_data= data_generater(trainer_id,inner_step=trainer._step,batch_size=64,count_by_step=count_by_step) #train_data,test_data= data_generater(trainer_id,inner_step=trainer._step,batch_size=64,count_by_step=count_by_step)
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle_fl.dataset.femnist.train( femnist.train(
trainer_id, trainer_id,
inner_step=trainer._step, inner_step=trainer._step,
batch_size=64, batch_size=64,
...@@ -85,7 +85,7 @@ while not trainer.stop(): ...@@ -85,7 +85,7 @@ while not trainer.stop():
batch_size=64) batch_size=64)
test_reader = paddle.batch( test_reader = paddle.batch(
paddle_fl.dataset.femnist.test( femnist.test(
trainer_id, trainer_id,
inner_step=trainer._step, inner_step=trainer._step,
batch_size=64, batch_size=64,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册