Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleFL
提交
637e476b
P
PaddleFL
项目概览
PaddlePaddle
/
PaddleFL
通知
35
Star
5
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
6
列表
看板
标记
里程碑
合并请求
4
Wiki
3
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleFL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
6
Issue
6
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
3
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
637e476b
编写于
9月 10, 2020
作者:
H
He, Kai
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mean normalize
上级
38d6059d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
586 addition
and
4 deletion
+586
-4
core/paddlefl_mpc/mpc_protocol/aby3_operators.h
core/paddlefl_mpc/mpc_protocol/aby3_operators.h
+8
-4
core/paddlefl_mpc/operators/mpc_mean_normalize_op.cc
core/paddlefl_mpc/operators/mpc_mean_normalize_op.cc
+154
-0
core/paddlefl_mpc/operators/mpc_mean_normalize_op.h
core/paddlefl_mpc/operators/mpc_mean_normalize_op.h
+94
-0
python/paddle_fl/mpc/layers/__init__.py
python/paddle_fl/mpc/layers/__init__.py
+3
-0
python/paddle_fl/mpc/layers/data_preprocessing.py
python/paddle_fl/mpc/layers/data_preprocessing.py
+202
-0
python/paddle_fl/mpc/tests/unittests/run_test_example.sh
python/paddle_fl/mpc/tests/unittests/run_test_example.sh
+1
-0
python/paddle_fl/mpc/tests/unittests/test_data_preprocessing.py
.../paddle_fl/mpc/tests/unittests/test_data_preprocessing.py
+124
-0
未找到文件。
core/paddlefl_mpc/mpc_protocol/aby3_operators.h
浏览文件 @
637e476b
...
...
@@ -319,13 +319,17 @@ public:
auto
a_tuple
=
from_tensor
(
in
);
auto
a_
=
std
::
get
<
0
>
(
a_tuple
).
get
();
auto
b_tuple
=
from_tensor
<
BoolTensor
>
(
pos_info
);
auto
b_
=
std
::
get
<
0
>
(
b_tuple
).
get
();
auto
out_tuple
=
from_tensor
(
out
);
auto
out_
=
std
::
get
<
0
>
(
out_tuple
).
get
();
a_
->
max_pooling
(
out_
,
b_
);
if
(
pos_info
)
{
auto
b_tuple
=
from_tensor
<
BoolTensor
>
(
pos_info
);
auto
b_
=
std
::
get
<
0
>
(
b_tuple
).
get
();
a_
->
max_pooling
(
out_
,
b_
);
}
else
{
a_
->
max_pooling
(
out_
,
nullptr
);
}
}
void
inverse_square_root
(
const
Tensor
*
in
,
Tensor
*
out
)
override
{
...
...
core/paddlefl_mpc/operators/mpc_mean_normalize_op.cc
0 → 100644
浏览文件 @
637e476b
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mpc_mean_normalize_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include <string>
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
MpcMeanNormalizationOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Min"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Min) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Max"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Max) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Mean"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Mean) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"SampleNum"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Sample) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Range"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Range) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"MeanOut"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Meanor) should not be null."
));
int64_t
total_sample_num
=
static_cast
<
int64_t
>
(
ctx
->
Attrs
().
Get
<
int
>
(
"total_sample_num"
));
auto
min_dims
=
ctx
->
GetInputDim
(
"Min"
);
auto
max_dims
=
ctx
->
GetInputDim
(
"Max"
);
auto
mean_dims
=
ctx
->
GetInputDim
(
"Mean"
);
auto
sample_num_dims
=
ctx
->
GetInputDim
(
"SampleNum"
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
min_dims
,
max_dims
,
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(Min) and "
"Input(Max) should be the same."
"But received (%d) != (%d)"
,
min_dims
,
max_dims
));
PADDLE_ENFORCE_EQ
(
min_dims
,
mean_dims
,
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(Min) and "
"Input(Max) should be the same."
"But received (%d) != (%d)"
,
min_dims
,
mean_dims
));
PADDLE_ENFORCE_EQ
(
min_dims
.
size
(),
3
,
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(Min) should be equal to 3 "
"(share_num, party_num, feature_num). But received (%d)"
,
min_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
sample_num_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(SampleNum) should be equal to 3 "
"(share_num, party_num). But received (%d)"
,
sample_num_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
sample_num_dims
[
1
],
min_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The party num of Input(SampleNum) and Input(Min) "
"should be equal But received (%d) != (%d)"
,
sample_num_dims
[
1
],
min_dims
[
1
]));
}
ctx
->
SetOutputDim
(
"Range"
,
{
mean_dims
[
0
],
mean_dims
[
2
]});
ctx
->
SetOutputDim
(
"MeanOut"
,
{
mean_dims
[
0
],
mean_dims
[
2
]});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Min"
),
ctx
.
device_context
());
}
};
class
MpcMeanNormalizationOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Min"
,
"(Tensor, default Tensor<int64_t>) A 2-D tensor with shape [P, N], "
"where P is the party num and N is the feature num. Each row contains "
" the local min feature val of N features."
);
AddInput
(
"Max"
,
"(Tensor, default Tensor<int64_t>) A 2-D tensor with shape [P, N], "
"where P is the party num and N is the feature num. Each row contains "
" the local max feature val of N features."
);
AddInput
(
"Mean"
,
"(Tensor, default Tensor<int64_t>) A 2-D tensor with shape [P, N], "
"where P is the party num and N is the feature num. Each row contains "
" the local mean feature val of N features."
);
AddInput
(
"SampleNum"
,
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [P], "
"where P is the party num. Each element contains "
"sample num of party_i."
);
AddOutput
(
"Range"
,
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [N], "
"where N is the feature num. Each element contains "
"global range of feature_i."
);
AddOutput
(
"MeanOut"
,
"(Tensor, default Tensor<int64_t>) A 1-D tensor with shape [N], "
"where N is the feature num. Each element contains "
"global mean of feature_i."
);
AddAttr
<
int
>
(
"total_sample_num"
,
"(int) Sum of sample nums from all party."
);
AddComment
(
R"DOC(
Mean normalization Operator.
When given Input(Min), Input(Max), Input(Mean) and Input(SampleNum),
this operator can be used to compute global range and mean for further feature
scaling.
Output(Range) is the global range of all features.
Output(MeanOut) is the global mean of all features.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
mpc_mean_normalize
,
ops
::
MpcMeanNormalizationOp
,
ops
::
MpcMeanNormalizationOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
mpc_mean_normalize
,
ops
::
MpcMeanNormalizationKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
core/paddlefl_mpc/operators/mpc_mean_normalize_op.h
0 → 100644
浏览文件 @
637e476b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "mpc_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
MpcMeanNormalizationKernel
:
public
MpcOpKernel
<
T
>
{
public:
void
ComputeImpl
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
min
=
context
.
Input
<
Tensor
>
(
"Min"
);
const
Tensor
*
max
=
context
.
Input
<
Tensor
>
(
"Max"
);
const
Tensor
*
mean
=
context
.
Input
<
Tensor
>
(
"Mean"
);
const
Tensor
*
sample_num
=
context
.
Input
<
Tensor
>
(
"SampleNum"
);
Tensor
*
range
=
context
.
Output
<
Tensor
>
(
"Range"
);
Tensor
*
mean_out
=
context
.
Output
<
Tensor
>
(
"MeanOut"
);
int
share_num
=
min
->
dims
()[
0
];
int
party_num
=
min
->
dims
()[
1
];
int
feat_num
=
min
->
dims
()[
2
];
Tensor
neg_min
;
neg_min
.
mutable_data
<
T
>
(
min
->
dims
(),
context
.
GetPlace
(),
0
);
Tensor
neg_min_global
;
Tensor
max_global
;
neg_min_global
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
1
,
feat_num
}),
context
.
GetPlace
(),
0
);
max_global
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
1
,
feat_num
}),
context
.
GetPlace
(),
0
);
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
neg
(
min
,
&
neg_min
);
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
max_pooling
(
&
neg_min
,
&
neg_min_global
,
nullptr
);
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
max_pooling
(
max
,
&
max_global
,
nullptr
);
range
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
1
,
feat_num
}),
context
.
GetPlace
(),
0
);
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
add
(
&
max_global
,
&
neg_min_global
,
range
);
range
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
// TODO: get total_sample_num by reduing size
int
total_sample_num
=
context
.
Attr
<
int
>
(
"total_sample_num"
);
Tensor
sample_num_
;
sample_num_
.
ShareDataWith
(
*
sample_num
);
sample_num_
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
1
,
party_num
}),
context
.
GetPlace
(),
0
);
mean_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
1
,
feat_num
}),
context
.
GetPlace
(),
0
);
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
matmul
(
&
sample_num_
,
mean
,
mean_out
);
mean_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
share_num
,
feat_num
}),
context
.
GetPlace
(),
0
);
mpc
::
MpcInstance
::
mpc_instance
()
->
mpc_protocol
()
->
mpc_operators
()
->
scale
(
mean_out
,
1.0
/
total_sample_num
,
mean_out
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle_fl/mpc/layers/__init__.py
浏览文件 @
637e476b
...
...
@@ -37,6 +37,8 @@ from . import rnn
from
.rnn
import
*
from
.
import
metric_op
from
.metric_op
import
*
from
.
import
data_preprocessing
from
.data_preprocessing
import
*
__all__
=
[]
__all__
+=
basic
.
__all__
...
...
@@ -46,3 +48,4 @@ __all__ += ml.__all__
__all__
+=
compare
.
__all__
__all__
+=
conv
.
__all__
__all__
+=
metric_op
.
__all__
__all__
+=
data_preprocessing
.
__all__
python/paddle_fl/mpc/layers/data_preprocessing.py
0 → 100644
浏览文件 @
637e476b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mpc data preprocessing op layers.
"""
from
paddle.fluid.data_feeder
import
check_type
,
check_dtype
from
..framework
import
check_mpc_variable_and_dtype
from
..mpc_layer_helper
import
MpcLayerHelper
__all__
=
[
'mean_normalize'
]
def
mean_normalize
(
f_min
,
f_max
,
f_mean
,
sample_num
,
total_sample_num
):
'''
Mean normalization is a method used to normalize the range of independent
variables or features of data.
Refer to:
https://en.wikipedia.org/wiki/Feature_scaling#Mean_normalization
Args:
f_min (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local min feature val of N features.
f_max (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local max feature val of N features.
f_mean (Variable): A 2-D tensor with shape [P, N], where P is the party
num and N is the feature num. Each row contains the
local min feature val of N features.
sample_num (Variable): A 1-D tensor with shape [P], where P is the
party num. Each element contains sample num
of party_i.
total_sample_num (int): Sum of sample nums from all party.
Returns:
f_range (Variable): A 1-D tensor with shape [N], where N is the
feature num. Each element contains global
range of feature_i.
f_mean_out (Variable): A 1-D tensor with shape [N], where N is the
feature num. Each element contains global
range of feature_i.
Examples:
.. code-block:: python
from multiprocessing import Manager
from multiprocessing import Process
import numpy as np
import paddle.fluid as fluid
import paddle_fl.mpc as pfl_mpc
import mpc_data_utils as mdu
import paddle_fl.mpc.data_utils.aby3 as aby3
redis_server = "127.0.0.1"
redis_port = 9937
test_f_num = 100
# party i owns 2 + 2*i rows of data
test_row_split = range(2, 10, 2)
def mean_norm_naive(f_mat):
ma = np.amax(f_mat, axis=0)
mi = np.amin(f_mat, axis=0)
return ma - mi, np.mean(f_mat, axis=0)
def gen_data(f_num, sample_nums):
f_mat = np.random.rand(np.sum(sample_nums), f_num)
f_min, f_max, f_mean = [], [], []
prev_idx = 0
for n in sample_nums:
i = prev_idx
j = i + n
ma = np.amax(f_mat[i:j], axis=0)
mi = np.amin(f_mat[i:j], axis=0)
me = np.mean(f_mat[i:j], axis=0)
f_min.append(mi)
f_max.append(ma)
f_mean.append(me)
prev_idx += n
f_min = np.array(f_min).reshape(sample_nums.size, f_num)
f_max = np.array(f_max).reshape(sample_nums.size, f_num)
f_mean = np.array(f_mean).reshape(sample_nums.size, f_num)
return f_mat, f_min, f_max, f_mean
class MeanNormDemo:
def mean_normalize(self, **kwargs):
"""
mean_normalize op ut
:param kwargs:
:return:
"""
role = kwargs['role']
pfl_mpc.init("aby3", role, "localhost", redis_server, redis_port)
mi = pfl_mpc.data(name='mi', shape=self.input_size, dtype='int64')
ma = pfl_mpc.data(name='ma', shape=self.input_size, dtype='int64')
me = pfl_mpc.data(name='me', shape=self.input_size, dtype='int64')
sn = pfl_mpc.data(name='sn', shape=self.input_size, dtype='int64')
out0, out1 = pfl_mpc.layers.mean_normalize(f_min=mi, f_max=ma,
f_mean=me, sample_num=sn, total_sample_num=self.total_num)
exe = fluid.Executor(place=fluid.CPUPlace())
f_range, f_mean = exe.run(feed={'mi': kwargs['min'],
'ma': kwargs['max'], 'me': kwargs['mean'],
'sn': kwargs['sample_num']},fetch_list=[out0, out1])
self.f_range_list.append(f_range)
self.f_mean_list.append(f_mean)
def run(self):
f_nums = test_f_num
sample_nums = np.array(test_row_split)
mat, mi, ma, me = gen_data(f_nums, sample_nums)
self.input_size = [len(sample_nums), f_nums]
self.total_num = mat.shape[0]
# simulating encrypting data
share = lambda x: np.array([x * mdu.mpc_one_share] * 2).astype('int64').reshape(
[2] + list(x.shape))
self.f_range_list = Manager().list()
self.f_mean_list = Manager().list()
proc = list()
for role in range(3):
args = {'role': role, 'min': share(mi), 'max': share(ma),
'mean': share(me), 'sample_num': share(sample_nums)}
p = Process(target=self.mean_normalize, kwargs=args)
proc.append(p)
p.start()
for p in proc:
p.join()
f_r = aby3.reconstruct(np.array(self.f_range_list))
f_m = aby3.reconstruct(np.array(self.f_mean_list))
plain_r, plain_m = mean_norm_naive(mat)
print("max error in featrue range:", np.max(np.abs(f_r - plain_r)))
print("max error in featrue mean:", np.max(np.abs(f_m - plain_m)))
MeanNormDemo().run()
'''
helper
=
MpcLayerHelper
(
"mean_normalize"
,
**
locals
())
# dtype = helper.input_dtype()
dtype
=
'int64'
check_dtype
(
dtype
,
'f_min'
,
[
'int64'
],
'mean_normalize'
)
check_dtype
(
dtype
,
'f_max'
,
[
'int64'
],
'mean_normalize'
)
check_dtype
(
dtype
,
'f_mean'
,
[
'int64'
],
'mean_normalize'
)
check_dtype
(
dtype
,
'sample_num'
,
[
'int64'
],
'mean_normalize'
)
f_range
=
helper
.
create_mpc_variable_for_type_inference
(
dtype
=
f_min
.
dtype
)
f_mean_out
=
helper
.
create_mpc_variable_for_type_inference
(
dtype
=
f_min
.
dtype
)
op_type
=
'mean_normalize'
helper
.
append_op
(
type
=
'mpc_'
+
op_type
,
inputs
=
{
"Min"
:
f_min
,
"Max"
:
f_max
,
"Mean"
:
f_mean
,
"SampleNum"
:
sample_num
,
},
outputs
=
{
"Range"
:
f_range
,
"MeanOut"
:
f_mean_out
,
},
attrs
=
{
# TODO: remove attr total_sample_num, reducing sample_num instead
"total_sample_num"
:
total_sample_num
,
})
return
f_range
,
f_mean_out
python/paddle_fl/mpc/tests/unittests/run_test_example.sh
浏览文件 @
637e476b
...
...
@@ -26,6 +26,7 @@ TEST_MODULES=("test_datautils_aby3"
"test_op_conv"
"test_op_pool"
"test_op_metric"
"test_data_preprocessing"
)
# run unittest
...
...
python/paddle_fl/mpc/tests/unittests/test_data_preprocessing.py
0 → 100644
浏览文件 @
637e476b
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module test data preprocessing.
"""
import
unittest
from
multiprocessing
import
Manager
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle_fl.mpc
as
pfl_mpc
import
mpc_data_utils
as
mdu
import
paddle_fl.mpc.data_utils.aby3
as
aby3
import
test_op_base
def
mean_norm_naive
(
f_mat
):
ma
=
np
.
amax
(
f_mat
,
axis
=
0
)
mi
=
np
.
amin
(
f_mat
,
axis
=
0
)
return
ma
-
mi
,
np
.
mean
(
f_mat
,
axis
=
0
)
def
gen_data
(
f_num
,
sample_nums
):
f_mat
=
np
.
random
.
rand
(
np
.
sum
(
sample_nums
),
f_num
)
f_min
,
f_max
,
f_mean
=
[],
[],
[]
prev_idx
=
0
for
n
in
sample_nums
:
i
=
prev_idx
j
=
i
+
n
ma
=
np
.
amax
(
f_mat
[
i
:
j
],
axis
=
0
)
mi
=
np
.
amin
(
f_mat
[
i
:
j
],
axis
=
0
)
me
=
np
.
mean
(
f_mat
[
i
:
j
],
axis
=
0
)
f_min
.
append
(
mi
)
f_max
.
append
(
ma
)
f_mean
.
append
(
me
)
prev_idx
+=
n
f_min
=
np
.
array
(
f_min
).
reshape
(
sample_nums
.
size
,
f_num
)
f_max
=
np
.
array
(
f_max
).
reshape
(
sample_nums
.
size
,
f_num
)
f_mean
=
np
.
array
(
f_mean
).
reshape
(
sample_nums
.
size
,
f_num
)
return
f_mat
,
f_min
,
f_max
,
f_mean
class
TestOpMeanNormalize
(
test_op_base
.
TestOpBase
):
def
mean_normalize
(
self
,
**
kwargs
):
"""
mean_normalize op ut
:param kwargs:
:return:
"""
role
=
kwargs
[
'role'
]
pfl_mpc
.
init
(
"aby3"
,
role
,
"localhost"
,
self
.
server
,
int
(
self
.
port
))
mi
=
pfl_mpc
.
data
(
name
=
'mi'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
ma
=
pfl_mpc
.
data
(
name
=
'ma'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
me
=
pfl_mpc
.
data
(
name
=
'me'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
sn
=
pfl_mpc
.
data
(
name
=
'sn'
,
shape
=
self
.
input_size
,
dtype
=
'int64'
)
out0
,
out1
=
pfl_mpc
.
layers
.
mean_normalize
(
f_min
=
mi
,
f_max
=
ma
,
f_mean
=
me
,
sample_num
=
sn
,
total_sample_num
=
self
.
total_num
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
f_range
,
f_mean
=
exe
.
run
(
feed
=
{
'mi'
:
kwargs
[
'min'
],
'ma'
:
kwargs
[
'max'
],
'me'
:
kwargs
[
'mean'
],
'sn'
:
kwargs
[
'sample_num'
]},
fetch_list
=
[
out0
,
out1
])
self
.
f_range_list
.
append
(
f_range
)
self
.
f_mean_list
.
append
(
f_mean
)
def
test_mean_normalize
(
self
):
f_nums
=
100
sample_nums
=
np
.
array
(
range
(
2
,
10
,
2
))
mat
,
mi
,
ma
,
me
=
gen_data
(
f_nums
,
sample_nums
)
self
.
input_size
=
[
len
(
sample_nums
),
f_nums
]
self
.
total_num
=
mat
.
shape
[
0
]
share
=
lambda
x
:
np
.
array
([
x
*
mdu
.
mpc_one_share
]
*
2
).
astype
(
'int64'
).
reshape
(
[
2
]
+
list
(
x
.
shape
))
self
.
f_range_list
=
Manager
().
list
()
self
.
f_mean_list
=
Manager
().
list
()
ret
=
self
.
multi_party_run
(
target
=
self
.
mean_normalize
,
min
=
share
(
mi
),
max
=
share
(
ma
),
mean
=
share
(
me
),
sample_num
=
share
(
sample_nums
))
self
.
assertEqual
(
ret
[
0
],
True
)
f_r
=
aby3
.
reconstruct
(
np
.
array
(
self
.
f_range_list
))
f_m
=
aby3
.
reconstruct
(
np
.
array
(
self
.
f_mean_list
))
plain_r
,
plain_m
=
mean_norm_naive
(
mat
)
self
.
assertTrue
(
np
.
allclose
(
f_r
,
plain_r
,
atol
=
1e-4
))
self
.
assertTrue
(
np
.
allclose
(
f_m
,
plain_m
,
atol
=
1e-3
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录