Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleFL
提交
424ba529
P
PaddleFL
项目概览
PaddlePaddle
/
PaddleFL
通知
35
Star
5
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
6
列表
看板
标记
里程碑
合并请求
4
Wiki
3
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleFL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
6
Issue
6
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
3
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
424ba529
编写于
5月 21, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update code to make test acc=0.116
上级
e2d65fef
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
242 addition
and
420 deletion
+242
-420
python/paddle_fl/mobile/README.md
python/paddle_fl/mobile/README.md
+3
-3
python/paddle_fl/mobile/application.py
python/paddle_fl/mobile/application.py
+14
-6
python/paddle_fl/mobile/model/language_model.py
python/paddle_fl/mobile/model/language_model.py
+132
-351
python/paddle_fl/mobile/reader/leaf_reddit_reader.py
python/paddle_fl/mobile/reader/leaf_reddit_reader.py
+1
-1
python/paddle_fl/mobile/trainer/language_model_trainer.py
python/paddle_fl/mobile/trainer/language_model_trainer.py
+92
-59
未找到文件。
python/paddle_fl/mobile/README.md
浏览文件 @
424ba529
...
...
@@ -60,10 +60,10 @@ mpirun -np 2 python application.py lm_data
### 训练结果
```
shell
framework.py : INFO infer results: 0.
085723
framework.py : INFO infer results: 0.
116334
```
即:在测试集上的,测试Top1为
8
.6%
即:在测试集上的,测试Top1为
11
.6%
## 添加自己的数据集和Trainer
...
...
@@ -89,7 +89,7 @@ framework.py : INFO infer results: 0.085723
-
Step1 模型初始化
1. 全局参数初始化:由编号为0的simulator来做模型初始化工作,初始化之后,它会通过UpdateGlobalParams()接口将参数传递给Scheduler;
2. 个性化参数初始化
-
Step2 模型分发
...
...
python/paddle_fl/mobile/application.py
浏览文件 @
424ba529
...
...
@@ -36,17 +36,22 @@ simulator = SimulationFramework(role_maker)
language_model_trainer
=
LanguageModelTrainer
()
language_model_trainer
.
set_trainer_configs
({
"epoch"
:
3
,
"epoch"
:
1
,
"max_steps_in_epoch"
:
-
1
,
"lr"
:
0.1
,
"lr"
:
1.0
,
"batch_size"
:
5
,
"max_grad_norm"
:
5
,
"n_hidden"
:
256
,
"num_layers"
:
2
,
"init_scale"
:
0.1
,
"dropout_prob"
:
0.0
,
})
sampler
=
UniformSampler
()
sampler
.
set_sample_num
(
3
0
)
sampler
.
set_sample_num
(
1
0
)
sampler
.
set_min_ins_num
(
1
)
test_sampler
=
Test1percentSampler
()
fed_avg_optimizer
=
FedAvgOptimizer
(
learning_rate
=
2.0
)
fed_avg_optimizer
=
FedAvgOptimizer
(
learning_rate
=
1.85
)
simulator
.
set_trainer
(
language_model_trainer
)
simulator
.
set_sampler
(
sampler
)
...
...
@@ -68,5 +73,8 @@ elif simulator.is_simulator():
print
(
"dates: {}"
.
format
(
dates
))
time
.
sleep
(
10
)
simulator
.
run_simulation
(
base_path
,
dates
,
sim_num_everyday
=
100
,
do_test
=
True
,
test_skip_day
=
1
)
simulator
.
run_simulation
(
base_path
,
dates
,
sim_num_everyday
=
100
,
do_test
=
True
,
test_skip_day
=
1
)
python/paddle_fl/mobile/model/language_model.py
浏览文件 @
424ba529
此差异已折叠。
点击以展开。
python/paddle_fl/mobile/reader/leaf_reddit_reader.py
浏览文件 @
424ba529
...
...
@@ -108,7 +108,7 @@ def train_reader(lines):
input_data
,
input_length
=
process_x
(
data_x
,
VOCAB
)
target_data
=
process_y
(
data_y
,
VOCAB
)
yield
[
input_data
]
+
[
target_data
]
yield
[
input_data
]
+
[
target_data
]
+
[
input_length
]
+
[
data_mask
]
return
local_iter
...
...
python/paddle_fl/mobile/trainer/language_model_trainer.py
浏览文件 @
424ba529
...
...
@@ -34,10 +34,10 @@ def train_one_user(arg_dict, trainer_config):
max_training_steps
=
trainer_config
[
"max_training_steps"
]
batch_size
=
trainer_config
[
"batch_size"
]
# logging.info("training one user...")
main_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"main_program_desc"
])
startup_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"startup_program_desc"
])
main_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"main_program_desc"
])
startup_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"startup_program_desc"
])
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
global_scope
()
...
...
@@ -46,10 +46,9 @@ def train_one_user(arg_dict, trainer_config):
exit
()
exe
.
run
(
startup_program
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
trainer_config
[
"input_names"
],
place
=
place
,
program
=
main_program
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
trainer_config
[
"input_names"
],
place
=
place
,
program
=
main_program
)
data_server_endpoints
=
arg_dict
[
"data_endpoints"
]
# create data clients
data_client
=
DataClient
()
...
...
@@ -76,36 +75,43 @@ def train_one_user(arg_dict, trainer_config):
epoch
=
trainer_config
[
"epoch"
]
max_steps_in_epoch
=
trainer_config
.
get
(
"max_steps_in_epoch"
,
-
1
)
metrics
=
trainer_config
[
"metrics"
]
metric_keys
=
metrics
.
keys
()
fetch_list
=
[
main_program
.
global_block
().
var
(
trainer_config
[
"loss_name"
])]
for
key
in
metric_keys
:
fetch_list
.
append
(
main_program
.
global_block
().
var
(
metrics
[
key
]))
fetch_list
=
[]
for
var
in
trainer_config
[
"target_names"
]:
fetch_list
.
append
(
var
)
seq_len
=
10
for
ei
in
range
(
epoch
):
fetch_res_list
=
[]
trained_sample_num
=
0
step
=
0
fetch_res_list
=
[]
total_loss
=
0.0
total_correct
=
0
num_layers
=
trainer_config
[
"num_layers"
]
hidden_size
=
trainer_config
[
"n_hidden"
]
tot_loss
,
tot_correct
=
0
,
0
tot_samples
=
0
init_hidden
,
init_cell
=
generate_init_data
(
batch_size
,
num_layers
,
hidden_size
)
for
data
in
train_reader
():
feed_data
,
input_lengths
=
prepare_input
(
batch_size
,
data
,
init_hidden
,
init_cell
)
fetch_res
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
feed_
data
),
fetch_list
=
fetch_list
)
loss
,
last_hidden
,
last_cell
,
correct
=
fetch_res
init_hidden
=
np
.
array
(
last_hidden
)
init_cell
=
np
.
array
(
last_cell
)
tot_loss
+=
np
.
array
(
loss
)
tot_correct
+=
np
.
array
(
correct
)
tot_samples
+=
np
.
sum
(
input_lengths
)
step
+=
1
trained_sample_num
+=
len
(
data
)
fetch_res_list
.
append
([
x
[
0
]
for
x
in
fetch_res
])
fetch_res_list
.
append
([
np
.
array
(
loss
),
np
.
array
(
correct
)
])
if
max_steps_in_epoch
!=
-
1
and
step
>=
max_steps_in_epoch
:
break
if
show_metric
and
trained_sample_num
>
0
:
loss
=
sum
([
x
[
0
]
for
x
in
fetch_res_list
])
/
trained_sample_num
print
(
"loss: {}, ppl: {}"
.
format
(
loss
,
np
.
exp
(
loss
)))
for
i
,
key
in
enumerate
(
metric_keys
):
if
key
==
"correct"
:
value
=
float
(
sum
([
x
[
i
+
1
]
for
x
in
fetch_res_list
]))
/
trained_sample_num
print
(
"correct: {}"
.
format
(
value
/
seq_len
))
loss
=
tot_loss
/
step
acc
=
float
(
tot_correct
)
/
tot_samples
print
(
"loss: {}, acc: {}"
.
format
(
loss
,
acc
))
local_updated_param_dict
=
{}
# update user param
...
...
@@ -142,10 +148,10 @@ def infer_one_user(arg_dict, trainer_config):
# run startup program, set params
uid
=
arg_dict
[
"uid"
]
batch_size
=
trainer_config
[
"batch_size"
]
startup_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"startup_program_desc"
])
infer_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"infer_program_desc"
])
startup_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"startup_program_desc"
])
infer_program
=
fluid
.
Program
.
parse_from_string
(
trainer_config
[
"infer_program_desc"
])
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
global_scope
()
...
...
@@ -169,7 +175,6 @@ def infer_one_user(arg_dict, trainer_config):
arg_dict
[
"global_params"
],
scope
)
# reader
date
=
arg_dict
[
"date"
]
global_param_dict
=
arg_dict
[
"global_params"
]
user_data
=
data_client
.
get_data_by_uid
(
uid
,
date
)
...
...
@@ -179,36 +184,60 @@ def infer_one_user(arg_dict, trainer_config):
# run infer program
os
.
mkdir
(
arg_dict
[
"infer_result_dir"
])
#pred_file = open(arg_dict["infer_result_dir"] + '/' + "pred_file", "w")
feeder
=
fluid
.
DataFeeder
(
feed_list
=
trainer_config
[
"input_names"
],
place
=
place
,
program
=
infer_program
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
trainer_config
[
"input_names"
],
place
=
place
,
program
=
infer_program
)
fetch_list
=
trainer_config
[
"target_names"
]
#logging.info("fetch_list: {}".format(fetch_list))
fetch_res
=
[]
sample_count
=
0
total_loss
=
0.0
total_correct
=
0
iters
=
0
steps
=
0
seq_len
=
10
num_layers
=
trainer_config
[
"num_layers"
]
hidden_size
=
trainer_config
[
"n_hidden"
]
tot_correct
,
tot_loss
=
0
,
0
tot_samples
,
tot_batches
=
0
,
0
init_hidden
,
init_cell
=
generate_init_data
(
batch_size
,
num_layers
,
hidden_size
)
for
data
in
infer_reader
():
# feed_data = [x["features"] + [x["label"]] for x in data]
# prediction, acc_val= exe.run(infer_program,
pred
,
correct_count
,
loss
=
exe
.
run
(
infer_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_list
)
total_loss
+=
loss
total_correct
+=
correct_count
steps
+=
1
sample_count
+=
len
(
data
)
correct
=
float
(
total_correct
)
/
(
seq_len
*
sample_count
)
# logging.info("correct: {}".format(correct))
feed_data
,
input_lengths
=
prepare_input
(
batch_size
,
data
,
init_hidden
,
init_cell
)
fetch_res
=
exe
.
run
(
infer_program
,
feed
=
feeder
.
feed
(
feed_data
),
fetch_list
=
fetch_list
)
loss
,
last_hidden
,
last_cell
,
correct
=
fetch_res
cost_eval
=
np
.
array
(
loss
)
init_hidden
=
np
.
array
(
last_hidden
)
init_cell
=
np
.
array
(
last_cell
)
correct_val
=
np
.
array
(
correct
)
tot_loss
+=
cost_eval
tot_correct
+=
correct_val
tot_samples
+=
np
.
sum
(
input_lengths
)
tot_batches
+=
1
loss
=
tot_loss
/
tot_batches
acc
=
float
(
tot_correct
)
/
tot_samples
logging
.
info
(
"infer acc: {}"
.
format
(
acc
))
with
open
(
arg_dict
[
"infer_result_dir"
]
+
"/res"
,
"w"
)
as
f
:
f
.
write
(
"%d
\t
%f
\n
"
%
(
1
,
correct
))
f
.
write
(
"%d
\t
%f
\n
"
%
(
1
,
acc
))
def
prepare_input
(
batch_size
,
data
,
init_hidden
,
init_cell
):
init_hidden
=
np
.
split
(
init_hidden
,
batch_size
)
init_cell
=
np
.
split
(
init_cell
,
batch_size
)
data
=
[[
features
]
+
[
labels
]
+
[
seq_len_ph
]
+
[
seq_mask_ph
]
+
[
init_hidden
[
i
]]
+
[
init_cell
[
i
]
]
\
for
i
,
(
features
,
labels
,
seq_len_ph
,
seq_mask_ph
)
in
enumerate
(
data
)]
input_lengths
=
[
x
[
2
]
for
x
in
data
]
return
data
,
input_lengths
def
generate_init_data
(
batch_size
,
num_layers
,
hidden_size
):
init_hidden
=
np
.
zeros
((
batch_size
,
num_layers
,
hidden_size
),
dtype
=
'float32'
)
init_cell
=
np
.
zeros
((
batch_size
,
num_layers
,
hidden_size
),
dtype
=
'float32'
)
return
init_hidden
,
init_cell
def
save_and_upload
(
arg_dict
,
trainer_config
,
dfs_upload_path
):
...
...
@@ -219,7 +248,6 @@ def save_and_upload(arg_dict, trainer_config, dfs_upload_path):
def
evaluate_a_group
(
group
):
group_list
=
[]
for
label
,
pred
,
_
in
group
:
# print("%s\t%s\n" % (label, pred))
group_list
.
append
((
int
(
label
),
float
(
pred
)))
random
.
shuffle
(
group_list
)
labels
=
[
x
[
0
]
for
x
in
group_list
]
...
...
@@ -236,7 +264,6 @@ class LanguageModelTrainer(TrainerBase):
"""
LanguageModelTrainer only support training with PaddlePaddle
"""
def
__init__
(
self
):
super
(
LanguageModelTrainer
,
self
).
__init__
()
self
.
main_program_
=
fluid
.
Program
()
...
...
@@ -270,10 +297,13 @@ class LanguageModelTrainer(TrainerBase):
"""
with
fluid
.
program_guard
(
self
.
main_program_
,
self
.
startup_program_
):
self
.
input_model_
=
LanguageModel
()
model_configs
=
{}
model_configs
=
self
.
trainer_config
self
.
input_model_
.
build_model
(
model_configs
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
self
.
trainer_config
[
"lr"
])
learning_rate
=
self
.
trainer_config
[
"lr"
],
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
self
.
trainer_config
[
"max_grad_norm"
]))
optimizer
.
minimize
(
self
.
input_model_
.
get_model_loss
())
self
.
main_program_desc_
=
self
.
main_program_
.
desc
.
serialize_to_string
()
...
...
@@ -283,13 +313,16 @@ class LanguageModelTrainer(TrainerBase):
self
.
input_model_
.
get_model_loss_name
())
self
.
update_trainer_configs
(
"input_names"
,
self
.
input_model_
.
get_model_input_names
(),
)
self
.
input_model_
.
get_model_input_names
(),
)
self
.
update_trainer_configs
(
"target_names"
,
self
.
input_model_
.
get_target_names
(),
)
self
.
input_model_
.
get_target_names
(),
)
self
.
update_trainer_configs
(
"metrics"
,
self
.
input_model_
.
get_model_metrics
(),
)
self
.
input_model_
.
get_model_metrics
(),
)
self
.
update_trainer_configs
(
"show_metric"
,
True
)
self
.
update_trainer_configs
(
"max_training_steps"
,
"inf"
)
self
.
update_trainer_configs
(
"shuffle"
,
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录