introduction.md 6.6 KB
Newer Older
D
dongdaxiang 已提交
1
# PaddleFL
G
guru4elephant 已提交
2 3 4

PaddleFL is an open source federated learning framework based on PaddlePaddle. Researchers can easily replicate and compare different federated learning algorithms with PaddleFL. Developers can also benefit from PaddleFL in that it is easy to deploy a federated learning system in large scale distributed clusters. In PaddleFL, serveral federated learning strategies will be provided with application in computer vision, natural language processing, recommendation and so on. Application of traditional machine learning training strategies such as Multi-task learning, Transfer Learning in Federated Learning settings will be provided. Based on PaddlePaddle's large scale distributed training and elastic scheduling of training job on Kubernetes, PaddleFL can be easily deployed based on full-stack open sourced software.

D
dongdaxiang 已提交
5
# Federated Learning
G
guru4elephant 已提交
6

D
dongdaxiang 已提交
7
Data is becoming more and more expensive nowadays, and sharing of raw data is very hard across organizations. Federated Learning aims to solve the problem of data isolation and secure sharing of data knowledge among organizations. The concept of federated learning is proposed by researchers in Google [1, 2, 3].
G
guru4elephant 已提交
8 9 10

## Overview of PaddleFL

J
jingqinghe 已提交
11 12
<img src='../../../images/FL-framework.png' width = "1000" height = "320" align="middle"/>

D
dongdaxiang 已提交
13
In PaddleFL, horizontal and vertical federated learning strategies will be implemented according to the categorization given in [4]. Application demonstrations in natural language processing, computer vision and recommendation will be provided in PaddleFL.
G
guru4elephant 已提交
14

J
jingqinghe 已提交
15 16 17
#### A. Federated Learning Strategy

- **Vertical Federated Learning**: Logistic Regression with PrivC[5], Neural Network with MPC [11]
G
guru4elephant 已提交
18

J
jingqinghe 已提交
19
- **Horizontal Federated Learning**: Federated Averaging [2], Differential Privacy [6], Secure Aggregation
G
guru4elephant 已提交
20

J
jingqinghe 已提交
21
#### B. Training Strategy
G
guru4elephant 已提交
22 23 24 25 26 27 28

- **Multi Task Learning** [7]

- **Transfer Learning** [8]

- **Active Learning**

J
jingqinghe 已提交
29 30 31 32 33 34
There are mainly two components in PaddleFL: **Data Parallel** and **Federated Learning with MPC (PFM)**.

With Data Parallel, distributed data holders can finish their Federated Learning tasks based on common horizontal federated strategies, such as FedAvg, DPSGD, etc.

Besides, PFM is implemented based on secure multi-party computation (MPC) to enable secure training and prediction. As a key product of PaddleFL, PFM intrinsically supports federated learning well, including horizontal, vertical and transfer learning scenarios. Users with little cryptography expertise can also train models or conduct prediction on encrypted data.

G
guru4elephant 已提交
35 36
## Framework design of PaddleFL

J
jingqinghe 已提交
37 38 39
### Data Parallel

<img src='images/FL-training.png' width = "1000" height = "400" align="middle"/>
G
guru4elephant 已提交
40

J
jingqinghe 已提交
41
In Data Parallel, components for defining a federated learning task and training a federated learning job are as follows:
G
guru4elephant 已提交
42

J
jingqinghe 已提交
43
#### A. Compile Time
G
guru4elephant 已提交
44

J
jingqinghe 已提交
45
- **FL-Strategy**: a user can define federated learning strategies with FL-Strategy such as Fed-Avg[2]
G
guru4elephant 已提交
46 47 48 49 50 51 52

- **User-Defined-Program**: PaddlePaddle's program that defines the machine learning model structure and training strategies such as multi-task learning.

- **Distributed-Config**: In federated learning, a system should be deployed in distributed settings. Distributed Training Config defines distributed training node information.

- **FL-Job-Generator**: Given FL-Strategy, User-Defined Program and Distributed Training Config, FL-Job for federated server and worker will be generated through FL Job Generator. FL-Jobs will be sent to organizations and federated parameter server for run-time execution.

J
jingqinghe 已提交
53
#### B. Run Time
G
guru4elephant 已提交
54 55 56 57 58

- **FL-Server**: federated parameter server that usually runs in cloud or third-party clusters.

- **FL-Worker**: Each organization participates in federated learning will have one or more federated workers that will communicate with the federated parameter server.

Q
qjing666 已提交
59 60
- **FL-scheduler**: Decide which set of trainers can join the training before each updating cycle.

J
jingqinghe 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
### Federated Learning with MPC

<img src='../../../images/PFM-overview.png' width = "1000" height = "446" align="middle"/>

Paddle FL MPC implements secure training and inference tasks based on the underlying MPC protocol like ABY3[11], which is a high efficient three-party computing model.

In ABY3, participants can be classified into roles of Input Party (IP), Computing Party (CP) and Result Party (RP). Input Parties (e.g., the training data/model owners) encrypt and distribute data or models to Computing Parties. Computing Parties (e.g., the VM on the cloud) conduct training or inference tasks based on specific MPC protocols, being restricted to see only the encrypted data or models, and thus guarantee the data privacy. When the computation is completed, one or more Result Parties (e.g., data owners or specified third-party) receive the encrypted results from Computing Parties, and reconstruct the plaintext results. Roles can be overlapped, e.g., a data owner can also act as a computing party.

A full training or inference process in PFM consists of mainly three phases: data preparation, training/inference, and result reconstruction.

#### A. Data preparation

- **Private data alignment**: PFM enables data owners (IPs) to find out records with identical keys (like UUID) without revealing private data to each other. This is especially useful in the vertical learning cases where segmented features with same keys need to be identified and aligned from all owners in a private manner before training.

- **Encryption and distribution**: In PFM, data and models from IPs will be encrypted using Secret-Sharing[10], and then be sent to CPs, via directly transmission or distributed storage like HDFS. Each CP can only obtain one share of each piece of data, and thus is unable to recover the original value in the Semi-honest model.

#### B. Training/inference

A PFM program is exactly a PaddlePaddle program, and will be executed as normal PaddlePaddle programs. Before training/inference, user needs to choose a MPC protocol, define a machine learning model and their training strategies. Typical machine learning operators are provided in `paddle_fl.mpc` over encrypted data, of which the instances are created and run in order by Executor during run-time.


#### C. Result reconstruction

Upon completion of the secure training (or inference) job, the models (or prediction results) will be output by CPs in encrypted form. Result Parties can collect the encrypted results, decrypt them using the tools in PFM, and deliver the plaintext results to users.

# On Going and Future Work

- Vertial Federated Learning will support more algorithms.

- Add K8S deployment scheme for Paddle Encrypted.
G
guru4elephant 已提交
91

J
jingqinghe 已提交
92
- FL mobile simulator will be open sourced in following versions.
G
guru4elephant 已提交
93 94