test_op_conv.py 20.2 KB
Newer Older
J
jhjiangcs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module test conv op.

"""
import unittest
from multiprocessing import Manager
import numpy as np


import test_op_base
from op_test import OpTest
import paddle_fl.mpc.data_utils.aby3 as aby3

import paddle.fluid as fluid
import paddle.fluid.core as core


def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

    in_n, in_c, in_h, in_w = input.shape
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
    sub_out_c = out_c // group
    sub_f_n = f_n // group

    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
        input_data_shape = input.shape[2:4]
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))

    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)

    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
                       mode='constant',
                       constant_values=0)

    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]

                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
                for k in range(sub_out_c):
                    # Multiplication of Corresponding Elements, then sum all
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))

    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

    return out, in_n, out_h, out_w, out_c


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase

def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"
        def test_check_grad(self):
K
kaih70 已提交
159 160 161 162 163 164 165 166 167 168 169 170
            pass
        #    error = 0.09
        #    if parent.__name__ in ["TestConv2dOp_AsyPadding",
        #            "TestWithStride_AsyPadding"]:
        #        error = 0.14
        #    elif parent.__name__ in ["TestWithInput1x1Filter1x1_AsyPadding"]:
        #        error = 0.66
        #    place = core.CPUPlace()
        #    self.check_grad_with_place(
        #        place, {'Input', 'Filter'},
        #        'Output',
        #        max_relative_error=error)
J
jhjiangcs 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase

class TestConv2dOp(OpTest):
    def setUp(self):
        OpTest.setUp(self)
        self.op_type = "mpc_conv2d"
        self.data_format = "AnyLayout"
        self.dtype = np.int64
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_test_case()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        share = lambda x: np.array([x * 65536/3] * 2).astype('int64')

        input = np.random.random(self.input_size)
        filter = np.random.uniform(-1, 1, self.filter_size)
        output, _, _, _, _ = conv2d_forward_naive(input, filter, self.groups,
                                                  conv2d_param)
        input = share(input)
        filter = share(filter)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'groups': self.groups,
            'dilations': self.dilations,
            'data_format': self.data_format,
        }
        self.outputs = {'Output': output}


    def test_check_output(self):
        place = core.CPUPlace()
        self.check_output_with_place(
            place, atol=1e-3)

    def test_check_grad(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.07)

K
kaih70 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    # skip cases for fast ut
    # to test correctness, uncomment test cases
    #def test_check_grad_no_filter(self):
    #    place =  core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, ['Input'],
    #        'Output',
    #        max_relative_error=0.07,
    #        no_grad_set=set(['Filter']))

    #def test_check_grad_no_input(self):
    #    place =  core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, ['Filter'],
    #        'Output',
    #        max_relative_error=0.06,
    #        no_grad_set=set(['Input']))
J
jhjiangcs 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_test_case_2(self):
        pass

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass


class TestWithPad(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

K
kaih70 已提交
276 277 278
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
279 280 281 282 283 284 285 286 287 288

class TestWithStride(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

K
kaih70 已提交
289 290 291
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
292 293 294 295 296 297 298 299 300 301 302

class TestWithGroup(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]

K
kaih70 已提交
303 304 305
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319

class TestWith1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [120, f_c, 1, 1]

    def init_group(self):
        self.groups = 3

    def test_check_grad(self):
K
kaih70 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333
        pass
    #    place = core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, {'Input', 'Filter'},
    #        'Output',
    #        max_relative_error=0.6)

    #def test_check_grad_no_filter(self):
    #    place =  core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, ['Input'],
    #        'Output',
    #        max_relative_error=0.9,
    #        no_grad_set=set(['Filter']))
J
jhjiangcs 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

class TestWithDilation(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [12, f_c, 3, 3]

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

K
kaih70 已提交
350 351 352
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366

class TestWithInput1x1Filter1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [100, 3, 1, 1]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [120, f_c, 1, 1]

    def init_group(self):
        self.groups = 3

    def test_check_grad(self):
K
kaih70 已提交
367 368
        pass

J
jhjiangcs 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

class TestConv2dOp_v2(OpTest):
    def setUp(self):
        self.op_type = "mpc_conv2d"
        self.dtype = np.int64
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        share = lambda x: np.array([x * 65536/3] * 2).astype('int64')

        input = np.random.random(self.input_size)
        filter = np.random.uniform(-1, 1, self.filter_size)


        output, _, _, _, _ = conv2d_forward_naive(input, filter, self.groups,
                                                  conv2d_param, self.padding_algorithm, self.data_format)

        input = share(input)
        filter = share(filter)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'data_format': self.data_format
        }
        self.outputs = {'Output': output}

    def test_check_output(self):
        place = core.CPUPlace()
        self.check_output_with_place(
            place, atol=1e-3)

K
kaih70 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    #def test_check_grad(self):
    #    place = core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, {'Input', 'Filter'},
    #        'Output',
    #        max_relative_error=0.14)

    #def test_check_grad_no_filter(self):
    #    place = core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, ['Input'],
    #        'Output',
    #        max_relative_error=0.13,
    #        no_grad_set=set(['Filter']))

    #def test_check_grad_no_input(self):
    #    place = core.CPUPlace()
    #    self.check_grad_with_place(
    #        place, ['Filter'],
    #        'Output',
    #        max_relative_error=0.7,
    #        no_grad_set=set(['Input']))
J
jhjiangcs 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 4, 3]

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


class TestConv2dOp_AsyPadding(TestConv2dOp_v2):
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"
    def test_check_grad(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.09)

K
kaih70 已提交
481 482 483
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496

class TestWithPad_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
497 498 499
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512

class TestWithStride_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
513 514 515
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
516 517 518 519 520 521 522 523 524 525 526

class TestWithGroup_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]

K
kaih70 已提交
527 528 529
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

class TestWith1x1_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [120, f_c, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
546 547 548
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

class TestWithDepthWise3x3_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 3, 3]

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
568 569 570
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

class TestWithDepthWise5x5_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
587 588 589
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

class TestWithDepthWise7x7_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
606 607 608
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

class TestWithDilation_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 3, 3]

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"

K
kaih70 已提交
628 629 630
    def test_check_grad(self):
        pass

J
jhjiangcs 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

class TestWithInput1x1Filter1x1_AsyPadding(TestConv2dOp_v2):
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [40, 3, 1, 1]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [120, f_c, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"

    def test_check_grad(self):
K
kaih70 已提交
648
        pass
J
jhjiangcs 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673


#---------- test SAME VALID -----------
create_test_padding_SAME_class(TestConv2dOp_AsyPadding)
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

create_test_padding_VALID_class(TestConv2dOp_AsyPadding)
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# ------------ test channel last ---------
create_test_channel_last_class(TestConv2dOp_AsyPadding)
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)


if __name__ == '__main__':
    unittest.main()