math.py 6.6 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
J
jingqinghe 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
mpc math op layers.
"""

from ..framework import MpcVariable
19
from ..framework import check_mpc_variable_and_dtype
J
jingqinghe 已提交
20 21 22 23 24 25 26
from ..mpc_layer_helper import MpcLayerHelper

__all__ = [
    'mean',
    'square',
    'sum',
    'square_error_cost',
27
    'reduce_sum'
J
jingqinghe 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
]


def mean(x, name=None):
    """
    Mean Operator calculates the mean of all elements in X.

    Args:
        x(MpcVariable): (Tensor) The input of mean op
        name(basestring|None): Name of the output.
    Returns:
        out(MpcVariable): (Tensor) The output of mean op
    Examples: todo
    """
    helper = MpcLayerHelper("mean", **locals())
43
    check_mpc_variable_and_dtype(x, 'x', ['int64'], 'mean')
J
jingqinghe 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    if name is None:
        out = helper.create_mpc_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_mpc_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mpc_mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


def square(x, name=None):
    """
    square Operator calculates the square of each element in X.

    Args:
        x(MpcVariable): (Tensor) The input of square op
        name(basestring|None): Name of the output.
    Returns:
        out(MpcVariable): (Tensor) The output of square op
    Examples: todo
    """
    helper = MpcLayerHelper("square", **locals())
68
    check_mpc_variable_and_dtype(x, 'x', ['int64'], 'square')
J
jingqinghe 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    if name is None:
        out = helper.create_mpc_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_mpc_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mpc_square", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


def sum(x):
    """
    Sum Operator calculates the sum of all elements in X.

    Args:
        x (MpcVariable|list(MpcVariable)) The input of sum op
        name(basestring|None): Name of the output.
    Returns:
        out(MpcVariable): (Tensor) The output of mean op
    Examples: todo
    """
    helper = MpcLayerHelper("sum", **locals())
93
    out = helper.create_mpc_variable_for_type_inference(dtype=helper.input_dtype('x'))
J
jingqinghe 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    helper.append_op(
        type="mpc_sum",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={'use_mkldnn': False})
    return out


def square_error_cost(input, label):
    """
    This op accepts input predictions and target label and returns the
    squared error cost.
    For predictions label, and target label, the equation is:
    .. math::
        Out = (input - label)^2
    Parameters:
        input (MpcVariable): Input tensor, the data type should be float32.
        label (MpcVariable): Label tensor, the data type should be float32.
    Returns:
        The tensor variable storing the element-wise squared error \
                  difference between input and label.
    Return type: MpcVariable.
    Examples: todo
    """
    helper = MpcLayerHelper('square_error_cost', **locals())
119
    minus_out = helper.create_mpc_variable_for_type_inference(dtype=input.dtype)
J
jingqinghe 已提交
120 121 122 123 124 125
    helper.append_op(
        type='mpc_elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

126
    square_out = helper.create_mpc_variable_for_type_inference(dtype=input.dtype)
J
jingqinghe 已提交
127
    helper.append_op(
128
        type='mpc_square', 
J
jingqinghe 已提交
129 130 131
        inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
    return square_out
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199



def reduce_sum(input, dim=None, keep_dim=False, name=None):
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
        input (MpcVariable) The input of sum op name(basestring|None): Name of the output.
        dim (list|int, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
            NOTE: 'dim' should not contain 0, becausedims[0] is share number.
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    Raises:
        TypeError, if out data type is different with the input data type.

    Returns:
        out(MpcVariable): (Tensor) The output of mean op
    Examples: 
        .. code-block:: python
            
            import paddle_fl.mpc as pfl_mpc

            pfl_mpc.init("aby3", int(args.role), "localhost", args.server, int(args.port))
            data_1 = pfl_mpc.data(name='x', shape=[3, 3], dtype='int64')
            pfl_mpc.layers.reshape(data_1, [1, 2])  # shape: [2, 1, 1]  
            # data_1 = np.full(shape=(3, 4), fill_value=2)
            # reduce_sum: 24
    """
    if dim is not None and not isinstance(dim, list):
        dim = [dim]

    if dim != None and dim != []:
        if 0 in dim:
            raise ValueError(
                "'dim' should not contain 0, because dim[0] is share number."
            )
    else:
        dim = [i for i in range(len(input.shape))][1:] 

    attrs = {
        'dim': dim,
        'keep_dim': keep_dim,
        'reduce_all': False
    }
    check_mpc_variable_and_dtype(
        input, 'input', ['int64'], 'reduce_sum')
    helper = MpcLayerHelper('reduce_sum', **locals())
    out = helper.create_mpc_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs)
    return out