mnist_demo.py 3.6 KB
Newer Older
K
Kai He 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MNIST Demo
"""

import sys
19
import os
K
Kai He 已提交
20 21 22 23 24 25 26 27

import numpy as np
import time

import paddle
import paddle.fluid as fluid
import paddle_fl.mpc as pfl_mpc
import paddle_fl.mpc.data_utils.aby3 as aby3
28

K
Kai He 已提交
29

30 31
env_dist = os.environ
local_host= env_dist.get('LOCALHOST')
J
jingqinghe 已提交
32
role, server, port = sys.argv[1], sys.argv[2], sys.argv[3]
K
Kai He 已提交
33
# modify host(localhost).
34
pfl_mpc.init("aby3", int(role), local_host, server, int(port))
K
Kai He 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
role = int(role)

# data preprocessing
BATCH_SIZE = 128
epoch_num = 2

# network
x = pfl_mpc.data(name='x', shape=[BATCH_SIZE, 784], dtype='int64')
y = pfl_mpc.data(name='y', shape=[BATCH_SIZE, 1], dtype='int64')

y_pre = pfl_mpc.layers.fc(input=x, size=1)
cost = pfl_mpc.layers.sigmoid_cross_entropy_with_logits(y_pre, y)

infer_program = fluid.default_main_program().clone(for_test=False)

avg_loss = pfl_mpc.layers.mean(cost)
optimizer = pfl_mpc.optimizer.SGD(learning_rate=0.001)
optimizer.minimize(avg_loss)

# train_reader
feature_reader = aby3.load_aby3_shares("/tmp/mnist2_feature", id=role, shape=(784,))
label_reader = aby3.load_aby3_shares("/tmp/mnist2_label", id=role, shape=(1,))
batch_feature = aby3.batch(feature_reader, BATCH_SIZE, drop_last=True)
batch_label = aby3.batch(label_reader, BATCH_SIZE, drop_last=True)

# test_reader
test_feature_reader = aby3.load_aby3_shares("/tmp/mnist2_test_feature", id=role, shape=(784,))
test_label_reader = aby3.load_aby3_shares("/tmp/mnist2_test_label", id=role, shape=(1,))
test_batch_feature = aby3.batch(test_feature_reader, BATCH_SIZE, drop_last=True)
test_batch_label = aby3.batch(test_label_reader, BATCH_SIZE, drop_last=True)

place = fluid.CPUPlace()

# async data loader
loader = fluid.io.DataLoader.from_generator(feed_list=[x, y], capacity=BATCH_SIZE)
batch_sample = paddle.reader.compose(batch_feature, batch_label)
loader.set_batch_generator(batch_sample, places=place)

test_loader = fluid.io.DataLoader.from_generator(feed_list=[x, y], capacity=BATCH_SIZE)
test_batch_sample = paddle.reader.compose(test_batch_feature, test_batch_label)
test_loader.set_batch_generator(test_batch_sample, places=place)

# loss file
78
# loss_file = "/tmp/mnist_output_loss.part{}".format(role)
K
Kai He 已提交
79 80 81 82 83 84

# train
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

for epoch_id in range(epoch_num):
85 86
    start_time = time.time()
    step = 0
K
Kai He 已提交
87 88
    # feed data via loader
    for sample in loader():
89
        batch_start = time.time()
90
        exe.run(feed=sample, fetch_list=[cost.name])
91
        batch_end = time.time()
K
Kai He 已提交
92
        if step % 50 == 0:
93
            print('Epoch={}, Step={}, batch_cost={:.4f} s'.format(epoch_id, step, (batch_end - batch_start)))
K
Kai He 已提交
94 95
        step += 1

96 97
    end_time = time.time()
    print('Mpc Training of Epoch={} Batch_size={}, epoch_cost={:.4f} s'
K
Kai He 已提交
98 99 100 101 102 103 104 105
      .format(epoch_num, BATCH_SIZE, (end_time - start_time)))

# prediction
prediction_file = "/tmp/mnist_output_prediction.part{}".format(role)
for sample in test_loader():
    prediction = exe.run(program=infer_program, feed=sample, fetch_list=[cost])
    with open(prediction_file, 'ab') as f:
        f.write(np.array(prediction).tostring())