test_op_metric.py 3.8 KB
Newer Older
H
He, Kai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module test metric op.

"""
import unittest

import numpy as np
import paddle.fluid as fluid
import paddle_fl.mpc as pfl_mpc
H
fix ut  
He, Kai 已提交
23
import mpc_data_utils as mdu
H
He, Kai 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

import test_op_base


def precision_recall_naive(input, label, threshold=0.5, stat=None):
    pred = input - (threshold - 0.5)
    pred = np.maximum(0, pred)
    pred = np.minimum(1, pred)
    idx = np.rint(pred)
    tp = np.sum(idx * label)
    fp = np.sum(idx) - tp
    fn = np.sum(label) - tp

    def calc_precision(tp, fp):
        return tp / (tp + fp) if tp + fp > 0 else 0.0

    def calc_recall(tp, fn):
        return tp / (tp + fn) if tp + fn > 0 else 0.0

    def calc_f1(precision, recall):
        return 2 * precision * recall / (precision + recall) if precision + recall > 0 else 0.0

    p_batch, r_batch = calc_precision(tp, fp), calc_recall(tp, fn)
    f_batch = calc_f1(p_batch, r_batch)

    p_acc, r_acc, f_acc = p_batch, r_batch, f_batch

    if stat:
        tp += stat[0]
        fp += stat[1]
        fn += stat[2]

        p_acc, r_acc = calc_precision(tp, fp), calc_recall(tp, fn)
        f_acc = calc_f1(p_acc, r_acc)

    new_stat = [tp, fp, fn]

    return np.array([p_batch, r_batch, f_batch, p_acc, r_acc, f_acc]), new_stat


class TestOpPrecisionRecall(test_op_base.TestOpBase):

    def precision_recall(self, **kwargs):
        """
        precision_recall op ut
        :param kwargs:
        :return:
        """
        role = kwargs['role']
        preds = kwargs['preds']
        labels = kwargs['labels']
        loop = kwargs['loop']

        pfl_mpc.init("aby3", role, "localhost", self.server, int(self.port))
        x = pfl_mpc.data(name='x', shape=self.input_size, dtype='int64')
        y = pfl_mpc.data(name='y', shape=self.input_size, dtype='int64')
        out0, out1 = pfl_mpc.layers.precision_recall(input=x, label=y, threshold=self.threshold)
        exe = fluid.Executor(place=fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
        for i in range(loop):
            batch_res, acc_res = exe.run(feed={'x': preds[i], 'y': labels[i]},
                    fetch_list=[out0, out1])

        self.assertTrue(np.allclose(batch_res * (2 ** -16), self.exp_res[0][:3], atol=1e-4))
        self.assertTrue(np.allclose(acc_res* (2 ** -16), self.exp_res[0][3:], atol=1e-4))

    def n_batch_test(self, n):
        self.input_size = [100]

        self.threshold = np.random.random()
        preds, labels = [], []
        self.exp_res = (0, [0] * 3)
H
fix ut  
He, Kai 已提交
96
        share = lambda x: np.array([x * mdu.mpc_one_share] * 2).astype('int64').reshape(
H
He, Kai 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                [2] + self.input_size)

        for _ in range(n):
            preds.append(np.random.random(self.input_size))
            labels.append(np.rint(np.random.random(self.input_size)))
            self.exp_res = precision_recall_naive(preds[-1], labels[-1],
                    self.threshold, self.exp_res[-1])
            preds[-1] = share(preds[-1])
            labels[-1] = share(labels[-1])

        ret = self.multi_party_run(target=self.precision_recall,
                preds=preds, labels=labels, loop=n)

        self.assertEqual(ret[0], True)

    def test_1(self):
        self.n_batch_test(1)

    def test_2(self):
        self.n_batch_test(2)


if __name__ == '__main__':
    unittest.main()