optimizer.py 8.5 KB
Newer Older
J
jingqinghe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MPC Optimizers
"""

from paddle.fluid.optimizer import Optimizer
from paddle.fluid import framework
from paddle.fluid.framework import program_guard
from paddle.fluid.framework import Variable
from paddle.fluid.clip import error_clip_callback
from paddle.fluid import unique_name
from paddle.fluid.initializer import Constant
from .backward import append_backward
from .mpc_layer_helper import MpcLayerHelper


class MPCSGDOptimizer(Optimizer):
    """
    MPCSGDOptimizer Implementation based on Optimizer Class in Paddle
    """

    def __init__(self, learning_rate, regularization=None, name=None):
        """
        """
        assert learning_rate is not None
        super(MPCSGDOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "mpc_sgd"

    def _append_optimize_op(self, block, param_and_grad):
        """
        Optimizer of the stochastic gradient descent algorithm.
        .. math::
            param\_out = param - learning\_rate * grad
        Parameters:
            learning_rate (float|Variable): The learning rate used to update parameters. \
                Can be a float value or a Variable with one float value as data element.
            parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
                This parameter is required in dygraph mode. \
                The default value is None in static mode, at this time all parameters will be updated.
            regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
                Optional, default is None.
            name (str, optional): This parameter is used by developers to print debugging information. \
                For details, please refer to :ref:`api_guide_Name`. Default is None.
        """
        assert isinstance(block, framework.Block)
        mpc_sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)

        return mpc_sgd_op

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.
        Args:
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameter_list (list, optional): List of ``Variable`` names to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable`` objects that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
        Return:
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
        Examples:
            See examples in ``apply_gradients``.
        """
        no_grad_set = self._get_no_grad_set(loss, no_grad_set)

        self._dtype = loss.dtype

        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
        program = loss.block.program
        assert len(loss.shape) == 2 and loss.shape[0] == 2 and loss.shape[1] == 1, \
                "The loss.shape should be (2L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
        with program_guard(program, startup_program):
            params_grads = append_backward(loss, parameter_list, no_grad_set,
                                           callbacks)
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
            self._append_dgc_ops(params_grads)
        return params_grads

    def _create_global_learning_rate(self):
        lr = self._global_learning_rate()

        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
                raise TypeError(
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")

        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='double',
            persistable=True)

    def _create_param_lr(self, param_and_grad):
        """
        create learning rate parameter
        """
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
        if type(param_lr) == Variable:
            return param_lr
        else:
            if param_lr == 1.0:
                return self._global_learning_rate()
            else:
                with fluid.default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
                    return self._global_learning_rate() * param_lr

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)


def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    This function creates a new tensor variable with value in the global block(block 0).
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
    Returns:
        Variable: The created Variable
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    helper = MpcLayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))

    return var


SGD = MPCSGDOptimizer