Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleDetection
  • Issue
  • #822

P
PaddleDetection
  • 项目概览

PaddlePaddle / PaddleDetection
大约 2 年 前同步成功

通知 708
Star 11112
Fork 2696
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleDetection
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 184
    • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
    • 合并请求 40
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 31, 2020 by saxon_zh@saxon_zhGuest

用paddledetection跑coco2017官方数据集结果精度一直只有百分之几,loss一直在八九十左右

Created by: LongLivecn

用paddledetection跑coco2017官方数据集结果精度一直只有百分之几,loss一直在八九十左右,是怎么回事?求教 以下是配置文件:

yolov3_darknet.yml:

architecture: YOLOv3
use_gpu: true
max_iters: 20000
log_smooth_window: 40
save_dir: output
snapshot_iter: 1000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar
weights: output/yolov3_darknet/model_final
num_classes: 80
use_fine_grained_loss: false

YOLOv3:
  backbone: DarkNet
  yolo_head: YOLOv3Head

DarkNet:
  norm_type: sync_bn
  norm_decay: 0.
  depth: 53

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
  yolo_loss: YOLOv3Loss
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

YOLOv3Loss:
  # batch_size here is only used for fine grained loss, not used
  # for training batch_size setting, training batch_size setting
  # is in configs/yolov3_reader.yml TrainReader.batch_size, batch
  # size here should be set as same value as TrainReader.batch_size
  batch_size: 8
  ignore_thresh: 0.7
  label_smooth: true

LearningRate:
  base_lr: 0.001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 4000
    - 8000
    - 12000
    - 16000
  - !LinearWarmup
    start_factor: 0.
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

_READER_: 'yolov3_reader.yml'

yolov3_reader.yml:

TrainReader:
  inputs_def:
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 50
  dataset:
    !COCODataSet
      image_dir: val2017
      anno_path: annotations/instances_val2017.json
      dataset_dir: dataset/coco
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: True
    - !MixupImage
      alpha: 1.5
      beta: 1.5
    - !ColorDistort {}
    - !RandomExpand
      fill_value: [123.675, 116.28, 103.53]
    - !RandomCrop {}
    - !RandomFlipImage
      is_normalized: false
    - !NormalizeBox {}
    - !PadBox
      num_max_boxes: 50
    - !BboxXYXY2XYWH {}
  batch_transforms:
  - !RandomShape
    sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
    random_inter: True
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: True
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  # Gt2YoloTarget is only used when use_fine_grained_loss set as true,
  # this operator will be deleted automatically if use_fine_grained_loss
  # is set as false
  - !Gt2YoloTarget
    anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    anchors: [[10, 13], [16, 30], [33, 23],
              [30, 61], [62, 45], [59, 119],
              [116, 90], [156, 198], [373, 326]]
    downsample_ratios: [32, 16, 8]
  batch_size: 16
  shuffle: true
  #mixup_epoch: 250
  drop_last: true
  worker_num: 8
  bufsize: 16
  use_process: true


EvalReader:
  inputs_def:
    fields: ['image', 'im_size', 'im_id']
    num_max_boxes: 50
  dataset:
    !COCODataSet
      image_dir: val2017
      anno_path: annotations/instances_val2017.json
      dataset_dir: dataset/coco
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !PadBox
      num_max_boxes: 50
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 16
  drop_empty: false
  worker_num: 8
  bufsize: 16

TestReader:
  inputs_def:
    image_shape: [3, 608, 608]
    fields: ['image', 'im_size', 'im_id']
  dataset:
    !ImageFolder
      anno_path: dataset/coco/annotations/instances_val2017.json
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 1
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleDetection#822
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7